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Abstract
Differentiating between natural and agricultural trees using remote sens-
ing is essential for assessing ecosystem services, commodity-driven 
deforestation, and restoration progress. Existing approaches focus on 
identifying a single tree commodity, rather than a system classification that 
is agnostic to species. This study presents a transfer learning approach to 
classify tree-based systems, leveraging extracted spatial embeddings from 
a high-performing neural network to improve classification accuracy in 
label-scarce environments. We applied a CatBoost classifier to a combina-
tion of Sentinel imagery, gray-level co-occurrence matrix texture features, 
and extracted spatial embeddings to classify four land use classes: natural, 
agroforestry, monoculture, and other (background). Through comparative 
modeling and feature selection exercises, we validate performance gains 
resulting from transfer learning and texture features. Building on previ-
ous efforts to model tree extent across the tropics (Brandt et al. 2023), we 
explore whether the spatial features extracted from Brandt et al.’s (2023) 
convolutional neural network can be repurposed to help classify tree-based 
systems. This method is demonstrated for 26 priority districts in Ghana, 
resulting in a 10-meter resolution land use map for 2020. Our findings sug-
gest the spatial embeddings extracted from Brandt et al.’s (2023) tree cover 
model offer value beyond their original task and represent a scalable path 
forward for broader monitoring efforts.

https://doi.org/10.46830/writn.24.00030
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Introduction
Earth observation data that can differentiate between natural 
and agricultural trees are crucial to effectively assess ecosystem 
services, commodity-driven deforestation, and restoration 
progress. While natural and agricultural tree systems appear 
visually similar in satellite imagery, they contribute in notably 
different ways to biodiversity and climate change mitigation 
(Naudts et al. 2016). Accurate and reliable information about 
the type and extent of these systems is critical to understand 
land use dynamics and ensure that national restoration targets 
are credibly monitored and reported. In Ghana, distinguish-
ing between natural and agricultural tree systems remains 
uniquely challenging because of multiple factors. These factors 
include high spectral similarity between certain systems; the 
small minimum mapping unit required to capture heterog-
enous, smallholder agricultural landscapes; and challenges 
such as persistent cloud cover and haze.

We present a transfer learning approach to classify tree-based 
systems. This approach leverages extracted spatial embeddings 
from a high-performing neural network to improve classifica-
tion accuracy in label-scarce environments. We refer to label 
scarcity as the limited availability of consistent, high-quality 
training labels, particularly due to ambiguity in class defini-
tions for complex systems like agroforestry. Building on 
previous efforts to model tree extent across the tropics (Brandt 
et al. 2023), we explore whether the spatial features extracted 
from Brandt et al.’s (2023) convolutional neural network 
(CNN) can be repurposed to support a distinct but related 
downstream task. We piloted the approach in Ghana, as part 
of a multi-year restoration monitoring partnership between 
World Resources Institute (WRI) and Ghana’s Environmen-
tal Protection Authority (EPA).

To test our hypothesis, we applied a gradient boosting 
classification algorithm (CatBoost) to a combination of 
Sentinel-2 images, spatial embeddings, and gray-level co-
occurrence matrix (GLCM) texture features derived from 
Sentinel images. Referencing existing efforts from Ghana’s 
remote sensing community (Abu et al. 2021; Ashiagbor et al. 
2020; Benefoh et al. 2018; Numbisi et al. 2019), we deter-
mined a set of approaches and discrete criteria to capture our 
target land use classes, which reflect the structure of different 
tree-based systems. We assessed whether using extracted 
embeddings and GLCM texture features enhances model 
learning. We performed benchmarking against a standard 
deep learning technique and a CatBoost model trained 
without embeddings. Through a feature selection exercise, we 
validated the contribution of texture and embedding features 
to model performance.

The transfer learning method was demonstrated across 26 
priority administrative districts that Ghana’s EPA identified. 
The final product is a 10-meter (m) resolution land use map 

for 2020 that distinguishes between tree-based systems, with 
the goal of informing future efforts to distinguish natural and 
planted vegetation using remote sensing.

Challenges
In the Ghanaian context, three key challenges affect the ability 
to develop accurate land use maps that distinguish between 
natural and planted tree systems. The first challenge is the 
limited availability of high-quality optical satellite imagery. 
Persistent cloud cover and haze, which reduce the accuracy 
of optical imagery, can cause low-quality images. While the 
dry season (December to March) may offer more cloud-free 
imagery, this season brings Harmattan haze, which is caused 
by dust-laden winds originating from the Sahara Desert. 
Harmattan winds can create a haze effect in optical remote 
sensing imagery, due to the winds suspending dust particles in 
the atmosphere for extended periods of time. However, some 
studies suggest the spectral distinction between certain vegeta-
tion (such as cashew and forest) can become more pronounced 
during the dry season, making the vegetation easier to dif-
ferentiate (Pereira et al. 2022). This seasonal tradeoff between 
imagery availability and class separability underlines how the 
timing of image acquisition can have a sizable impact on the 
detectability and classification of certain tree systems.

The second challenge is deciphering trends within Ghana’s 
highly diverse agricultural landscape. Half of smallholder 
agricultural systems in Africa are smaller than 1 hectare (ha) 
(Estes et al. 2022). Small-scale oil palm plantations vary 
in size across the tropics, but they are noticeably smaller in 
Ghana, where they range from 0.5 to 5 ha (Chamberlin 2008). 
To classify small-scale agricultural activity, a small minimum 
mapping unit is necessary for remote sensing-based datasets 
to capture the high spatial variability in land use dynamics, 
irregular field boundaries, and heterogenous smallholder 
characteristics. These characteristics increase the potential for 
error when creating land use maps.

The third challenge in distinguishing between natural and 
planted tree systems in Ghana relates to the structural and 
spectral similarity between shaded cocoa plantations and 
open canopy forests. Certain agroforestry systems, such as 
silvopastoral systems, boundary plantings, home gardens, 
and woodlots (Daniel et al. 2018), can be easier to detect 
due to their clear and distinguishable spatial patterns. In 
contrast, agricultural crops sit under existing or intentionally 
planted shade trees in shaded cocoa plantations, resulting 
in multi-strata canopy structures that closely resemble open 
canopy forests in satellite imagery. This structural and spectral 
similarity makes these plantations difficult to isolate from 
neighboring forests and other tree crops using optical imagery 
alone (Abu et al. 2021; Ashiagbor et al. 2020; Benefoh et al. 
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2018). The presence of the same tree species in both shaded 
cocoa plantations and open canopy forests also accounts 
for these spectral similarities. Farmers consistently rank 
Terminalia superba and Terminalia ivorensis among the top 
preferred shade tree species across all cocoa production stages 
(Asigbaase et al. 2025). These are also two dominant species 
in Ghana’s forests, especially in the moist semi-deciduous 
ecological zone (Hall and Swaine 1981). Ghana is uniquely 
known within the remote sensing community for this class 
separability problem, with studies finding negligible differ-
ences between the spectral signature of Ghana’s natural forests 
and full sun or shaded cocoa systems compared to the same 
systems in Ecuador (Filella 2018). The spectral similarities 
between agroforestry and open canopy natural systems result 
in low classification accuracy among existing land use and 
land cover maps of Ghana (Ashiagbor et al. 2020). These 
three remote sensing challenges underscore the difficulty in 
using traditional classification approaches to map land use 
in this country.

Existing approaches
Due to its strong performance in label-scarce environments, 
transfer learning is gaining traction in the machine learning 
field. Transfer learning techniques involve applying the knowl-
edge from a pre-trained algorithm to a separate but related 
task. In a remote sensing context, CNN-based approaches 
map input optical imagery to output map classes using spa-
tially explicit feature maps at various spatial resolutions. These 
features transform the input into a high dimensional feature 
space with rich representations of the input imagery, which 
can be used as a starting point for other downstream tasks 
via transfer learning. Transfer learning approaches can reduce 
expensive and time-consuming training steps, while also 
minimizing the need for a large number of labeled samples to 
achieve strong performance.

Several types of transfer learning techniques have been applied 
in the field of remote sensing for land cover mapping (Ma 
et al. 2024). A typical approach to transfer learning involves 
adapting a pre-trained algorithm by fine-tuning its param-
eters and re-training layers to perform a new prediction task. 
However, transfer learning can also involve extracting learned 
features from new data and using the features as input to a 
new model. Alem and Kumar (2022) explore how a bottleneck 
feature extraction technique applied to three pre-trained 
models can improve classification performance for land use 
and land cover (LULC) classification in remote sensing 
images. Hamrouni et al. (2021) illustrate how adapting a local 
classifier with new relevant training samples can help classify 
poplar plantations at scale in Sentinel-2 imagery.

Several recent remote sensing-based efforts have made signifi-
cant progress in mapping agroforestry and plantation systems 
across Ghana and the broader West Africa region. However, 

most research has focused on identifying a single tree com-
modity, rather than a system classification that is agnostic to 
species. To track the rapid expansion of oil palm production 
in Ghana, Abramowitz et al. (2023) applied a Random Forest 
classifier to Sentinel imagery to differentiate closed-canopy 
industrial from smallholder oil palm. Several studies have 
explored methods to distinguish natural from agroforestry 
land uses at a national scale using freely available Sentinel-1 
and Sentinel-2 imagery. Abu et al. (2021) applied a Random 
Forest model to detect cocoa plantation encroachment into 
protected areas in Côte d’Ivoire and Ghana, using GLCM 
texture features to detect small-scale cocoa farms. Ashiagbor 
et al. (2020) combined a pixel and object-based approach 
to distinguish agroforestry cocoa from forest and other land 
use classes in Ghana. Numbisi et al. (2019) also explored 
using texture features to discriminate cocoa agroforests from 
transition forests in Cameroon. Benefoh et al. (2018) applied 
an image-fusion technique to isolate cocoa plantations from 
other vegetation and estimate cocoa-led deforestation. By 
attempting to detect and classify broader systems rather than a 
single commodity type, we build on the technical and defini-
tional foundations these researchers established, particularly in 
using GLCM texture metrics and operational remote sensing-
based definitions of agroforestry.

In 2023, following extensive model development and research, 
Brandt et al. (2023) released the Tropical Tree Cover (TTC) 
dataset, a Sentinel-based tree cover product that covers 2020. 
The dataset was generated using a multi-temporal CNN that 
achieved 94 percent overall accuracy across 4.35 billion ha in 
the tropics. The dataset shows consistently high performance 
across multiple land types, including areas with open canopy 
forest, dryland, and cropland. As a 10-m resolution product, 
TTC outperformed existing 30-m resolution datasets in 
detecting small patches of tree cover, particularly in complex 
and fragmented landscapes. Given this strong performance, 
we hypothesized that the spatial embeddings extracted from 
a model adept at tree detection across varied land cover types 
could be repurposed to inform a separate but related exercise. 
One significant shortcoming of the TTC dataset is the lack 
of differentiation between natural and agricultural tree cover. 
This distinction is critical for restoration monitoring applica-
tions, as gains in tree cover cannot be meaningfully assessed 
without understanding whether they result from a success-
ful restoration intervention or agricultural expansion. The 
inability of most global- or tropical-scale tree cover products 
to differentiate between natural and planted trees (Fagan et al. 
2022) limits their relevance for restoration monitoring. This 
study explores the potential to use embeddings from the TTC 
model to inform tree-based system classification in Ghana. By 
using a “light touch” transfer learning approach that integrates 
TTC spatial embeddings in a new classification pipeline, we 
extend the TTC dataset’s usefulness (Brandt et al. 2023), 
while ensuring methodological compatibility to lay the foun-
dation for TTC’s future change detection applications.
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Methods
Study area
We conducted this study across 26 administrative districts, 
spanning 8 of Ghana’s 16 regions. The 26 administrative 
districts form part of an ongoing effort by Ghana’s EPA 
to monitor restoration progress and streamline integrated 
landscape management plans. The target districts were selected 
as priority areas based on their locations within biological cor-
ridors, as well as land degradation and illegal mining pressures 
(Pers. Comm. 2023a). The following districts were included: 
Adansi South, Asante Akim South, Assin North, Atwima 
Mponua, Bawku West, Bosome Freho, Builsa South, Daffiama 
Bussie Issa, Juaben Municipal, Kassena Nankana West, Kwahu 
Afram Plains North, Kwahu Afram Plains South, Kwahu 
East, Kwahu South, Kwahu West, Mamprugu Moagduri, 
Sawla-Tuna-Kalba, Sekyere Afram Plains North, Sene West, 
Sissala East, Sissala West, Talensi, Twifo Atti-Morkwa, Wa 
East, West Gonja, and West Mamprusi Municipal.

Ghana’s landscape consists of five general agro-ecological 
zones: Savannah, Transitional, Deciduous, Evergreen, and 
Coastal Savannah (Abbam et al. 2018) (Figure 1). This study 
focuses on two main groups of districts: the southern group 
and the northern group. The southern group sits between 
latitudes 5°N and 8°N and stretches from the Deciduous 
zone to the Savannah-forest Transitional zone. The northern 
group sits between latitudes 8°N and 11°N and stretches 
from the Savannah-forest Transitional zone to the Savannah 

zone. These two district groups cover several forest and game 
reserves, protected areas, and wildlife corridors, as well as a 
highly dynamic and evolving agricultural landscape.

Southern Ghana, dominated by deciduous and transitional 
forests, is well-suited to cocoa trees, which prefer a high 
average annual rainfall, moderate temperatures, and low 
climatic variability (Osei-Gyabaah et al. 2023). Other tree 
crops, such as oil palm, cashew, and shea, are commonly 
grown in the cocoa belt, thus may be intercropped with cocoa. 
Oil palm and rubber monoculture plantations are generally 
concentrated in the South and Southwest, due to the favorable 
climatic conditions.

Moving northward, the climate becomes drier, transitioning 
into savannah woodland. The Savannah zone is characterized 
by lower rainfall, higher temperatures, and greater climatic 
variability (Abbam et al. 2018), which offer less favorable 
conditions for cocoa trees. Cashew, acacia, baobab, and shea 
are common drought-resistant trees in northern Ghana that 
are often used for agroforestry (Moomen et al. 2024). Agri-
culture in the region is mainly rain-fed and faces challenges 
during the dry season from November to March, also called 
the Harmattan. Strong winds from the Sahel bring dust, dry 
conditions, and extreme temperature fluctuations, increasing 
wildfire risks and disrupting farming.

Figure 1 | Study area map

Notes: Study area (priority districts) in Ghana: A) Ghana’s 16 official regions are outlined in white. B) The 26 priority districts are illustrated with green fill, while all other districts are 
outlined in light green. C) The agro-ecological zones of Ghana, including the Savannah, Transitional, Deciduous, Evergreen, and Coastal Savannah zones. 
Source: Adapted from Abbam et al. 2018.
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Land use definitions
We distinguished four land use classes: monoculture, agro-
forestry, natural, and other (background) (Table 1). This 
approach differs from traditional land cover or commodity-
focused mapping exercises by focusing on a tree-based system 
definition, rather than an individual crop or simple canopy 
presence. We focus on the classification of tree-based systems 
and do not include food crops, such as maize, rice, cassava, or 
plantain, in the agricultural classes (monoculture or agrofor-
estry). Photo interpreters distinguished the classes using key 
characteristics, including tree cover, canopy structure, and 
spatial arrangement.

Training data
Collection and photointerpretation
To pinpoint landscapes suitable for collecting training data for 
our designated classes, we referenced existing forest and tree 
crop datasets. We referenced four different vector datasets and 
one field survey in this process.

First, the Spatial Database of Planted Trees (SDPT) (Richter 
et al. 2024) is a living database of spatial information about 
the locations of planted forests and tree crops throughout 
the world. It includes data that national governments, non-
governmental organizations, researchers, or a combination of 
sources provided. In Ghana, SDPT contains comprehensive 
information about oil palm and rubber plantations, which 
was used to sample training points for the monoculture class. 
Second, the West Africa Cocoa (WAC) dataset contains cocoa 

Table 1  |  Definitions used for the mapped land use classes and example tree crops  

LAND USE CLASS DEFINITION LABELING CRITERIA EXAMPLE

Other (background) Areas containing less than 10% tree 
cover.

Surfaces appear built, bare, or sparsely 
vegetated.

Typically represented by human 
settlement areas, bare land, 
grasslands, water, and mining areas.

Monoculture Agricultural tree systems with a single 
canopy stratum and no productive or 
managed understory.

Crown shape and size is relatively 
consistent, and a distinct planting 
pattern can be detected.

Typically represented by oil palm and 
rubber plantations.

Agroforestry Agricultural tree systems with natural 
or planted trees that form 2 distinct 
canopy strata.

Crown shape and size vary. Area 
shows signs of disturbance (harvest, 
regrowth) across years.

Typically represented by shadow 
systems, like cocoa grown under shade 
trees or shea serving as shade trees 
for crops.

Natural Primary and secondary woody 
vegetation that has not been 
deliberately planted or managed by 
humans.

No planting pattern or distinct spatial 
organization. Areas do not exhibit 
disturbance across years.

Typically represented by forest 
reserves and protected areas.

Source: Ashiagbor et al. 2020; WRI authors.
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polygons across Côte d’Ivoire and Ghana. Leading cocoa and 
chocolate companies sourcing directly from these locations 
supplied the polygons (Schneider et al. 2023). Since cocoa in 
Ghana is often grown in shaded agroforestry systems, WAC 
polygons were used to sample training points for the agro-
forestry class. Third, the World Database on Protected Areas 
(WDPA) contains spatially referenced information about 
legally protected areas, including nature reserves, wilderness 
areas, national parks, and gazetted forests (Bingham et al. 
2019). WDPA forest reserve polygons in Ghana were used 
to sample training points for the natural tree class. Fourth, 
Ghana’s Resource Management Support Centre (RMSC) 
provided field-collected samples that contained locations 
for shea, mango, cashew, and citrus tree crops (Pers. Comm. 
2023b). RMSC collected the field data between May and July 
2022 across five basins in Ghana: Black Volta, Pra, Sene, Tano, 
and White Volta.

To derive training data, we first calculated the centroid of each 
polygon in our reference forest and tree crop datasets. Then we 
performed a secondary photointerpretation step to ensure the 
samples were assigned an accurate label for 2020, our year of 
interest. Since the reference vector datasets came from various 
years, the photointerpretation step was critical to address any 
temporal inconsistencies (land use change) and ensure that 
labels aligned with our land use definitions. As an example, 
WDPA forest reserve polygons were referenced to gather 
training samples for the natural class; however, Ghana permits 
forest plantations to be established within reserves, meaning a 

teak or eucalyptus plantation could likely be present in these 
areas (Forestry Commission 2021). The photointerpreta-
tion step ensured we accurately labeled these samples in the 
monoculture, rather than natural, land use class.

Photointerpretation surveys were prepared for per-pixel anno-
tation using Collect Earth, an online tool (Saah et al. 2019) 
(Figure 2). This study’s authors performed the annotation. 
We developed a labeling guide in collaboration with govern-
ment stakeholders, photointerpretation specialists, and subject 
matter experts. We drew on existing literature, field data, 
and spatial datasets to ensure consistency and accuracy. Only 
10-m resolution Sentinel imagery was available on the Collect 
Earth platform, so annotators also referenced high-resolution 
imagery, accessed through Google Earth Pro, to support the 
photointerpretation exercise. Google Earth contains a large 
collection of imagery (satellite, aerial, three-dimensional, 
and street view) with varying resolutions, ranging from 30 m 
per pixel to 10–15 centimeters (cm) per pixel in some areas 
(Google n.d.). The Collect Earth surveys overlaid a 14 x 14 
gridded plot on the centroids. Thus each point was spaced at 
10-m intervals to create a 140 x 140-meter plot (Figure 2). 
Annotators classified each Sentinel-2 pixel in the plot into a 
land cover class according to the definitions outlined in Table 
1. Annotators used information about crown shape and size, 
spatial patterns, and contextual indicators—like proximity 
to infrastructure and disturbance over time—to inform their 
classifications. Since some samples remained extremely chal-
lenging to classify due to poor image availability and quality, 

Figure 2 | Photointerpretation schema

Notes: Example of photointerpretation plots across typical scenes of agroforestry, monoculture, and natural systems. The scale, number, and design of gridded plots are illustrated 
for visual effects and are not consistent with the schema used in this study. 
Source: WRI authors.

MonocultureAgroforestry Natural Unknown
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Figure 3 | Machine learning pipeline

 
Notes: The machine learning pipeline takes Sentinel ARD, spatial embeddings, and labels as input, then performs preprocessing, classification, and postprocessing steps. A model 
development stage is also represented, including hyperparameter tuning, feature selection, and evaluation using a version control system to manage experiments. 
Source: WRI authors.

an “unknown” label category was included in the Collect 
Earth survey to capture these instances. High-resolution 
imagery was considered unavailable if there were no images 
for the plot between 2017–2022, or if images could not be 
interpreted due to haze or cloud cover. In these scenarios, 
the entire plot was marked “unknown” and dropped from the 
training batch.

Quality assessment
Improving label quality is one of the most important means 
to increase model accuracy (Estes et al. 2022). Consider-
ing the complexity of photointerpretation and likeness 
between certain land use classes, we conducted a data and 
label assessment to minimize annotation error that may 
have been introduced in the training dataset. Cleanlab is 
a tool that algorithmically detects data and label issues in 
machine learning datasets (Northcutt et al. 2021). Cleanlab 
automatically detects label, outlier, and duplicate issues using 
a confident learning framework. Label issues allow users to 
identify where there might be discrepancies in their annota-
tions. Confident learning can detect these issues by identifying 
examples where the predicted class consistently disagrees with 
the annotator’s given label, even when the model is confident. 
Duplicate issues refer to two or more samples (pixels) that 
exhibit extreme similarity, relative to the rest of the dataset. 
Near duplicates can negatively impact model generalization 
and lead to overfitting, because duplicative examples can be 
unintentionally emphasized during model training. Outlier 
issues refer to samples that are extremely different from the 
rest of the dataset, such as rare or anomalous instances. In our 
case, a large portion of the outlier issues belonged to pixels in 
the other (background) class, which is reasonable consider-
ing this is the only class that includes non-vegetation pixels 
and encompasses urban land covers. The Cleanlab assessment 
was performed at the pixel scale, meaning each pixel was 
individually scored for label, outlier, and duplicate issues. We 

reviewed the assessment results at the plot level (for all 196 
pixels in each plot) to determine if the entire plot introduced 
confusion into the model and should be removed. This analysis 
allowed us to identify 28 plots (totaling 5,488 pixels) where 
all 196 pixels in the plot were affected by label issues. We also 
identified 27 plots where label issues affected a majority of the 
pixels (at least 180 of 196). We chose to drop all 55 plots from 
the training data. We decided against dropping samples with 
outlier issues, as they had the potential to contain important 
information for the other (background) class. The Cleanlab 
assessment also flagged six full plots with near duplicate issues. 
We chose to drop all these plots, except the example with the 
lowest near-duplicate score. The near-duplicate score assigned 
to the sample was determined by its proportional distance to 
its nearest neighbor (Northcutt et al. 2021). In most cases, 
the flagged plots came from the same training data batches, 
signaling consistency in the type of data that introduced 
confusion or error.

Final training dataset
To produce the final training dataset, we removed 242 plots 
that were labeled “unknown,” 118 plots that had no analysis-
ready Sentinel imagery for 2020, and 60 plots that were 
flagged during the Cleanlab assessment. The final training 
dataset was comprised of 976 plots, containing 191,296 
pixels. The proportion of points in each class was 18.6 percent 
monoculture, 37.8 percent agroforestry, 16.9 percent natural, 
and 26.6 percent other (background).

Feature generation
The predictive features for the classification task included 
Sentinel-1 radar and Sentinel-2 optical imagery for 2020, 
spatial embeddings extracted from the CNN underpinning 
the TTC dataset, and texture features. Texture features were 
extracted from Sentinel-2 imagery using a GLCM analysis 

TROPICAL TREE COVER
CNN

DATA VERSION
CONTROL

DATA INPUTS

Sentinel ARDSpatial 
embeddings

Labels

PREPROCESSING

Data 
ingestion

Data 
preparation

Feature 
engineering

(GLCM 
texture)

MODEL DEVELOPMENT

Experiments

• Training
• Feature selection
• Tuning
• Assessment

Data Code

Model

MODEL DEPLOYMENT

Mosaic

• Noise reduction
• Connected 

component analysis

POST PROCESSING



8  |  

  

method. Each training sample consisted of 13 optical and 
radar Sentinel bands, 65 embeddings, and 16 GLCM texture 
features combined as a 94-band input. These 94 input features 
were fed into a classification pipeline to assign a land use class 
to each pixel. Figure 3 shows the machine learning pipeline, 
including pre- and post-processing steps. This section further 
details how the 94 input features were produced. The authors 
performed all data processing, preparation, and classification 
steps using Python and associated geospatial libraries.

Sentinel analysis ready data
Sentinel-1 and Sentinel-2 images were acquired through 
the Sentinel Hub Application Programming Interface. The 
13 Sentinel analysis ready data (ARD) bands contained four 
Sentinel-2 bands at a 10-m resolution, six Sentinel-2 bands at 
a 20-m resolution, two Sentinel-1 bands at a 10-m resolution, 
and a digital elevation model (DEM) from the Shuttle Radar 
Topography Mission (Farr and Kobrick 2000). We selected 
the best monthly 10- and 20-m bottom-of-atmosphere (L2A) 
Sentinel-2 image based on cloud cover. We then accessed the 
image angle from the Sen2Cor scene classification data (Louis 
et al. 2016). Finally, we acquired the monthly composite of 
vertical transmit/vertical receive (VV) and vertical transmit/
horizontal receive (VH) ground range detected (GRD) 
Sentinel-1 observations for all of Ghana throughout 2020. 
Additionally, we generated monthly ARD composites of Sen-
tinel-2 and Sentinel-1 imagery from the raw imagery available 
prior to analysis. We created all ARD using Python’s scientific 
computing libraries: NumPy 1.18.0 (Harris et al. 2020) and 
SciPy 1.7.3 (Virtanen et al. 2020).

The Sentinel-1 ARD composites were comprised of the 
monthly median of the decibel gamma naught VV and VH 
GRD data, processed with no speckle filtering. Speckle filter-
ing is typically not applied to temporally aggregated GRD 
data, since this filtering is a composite of multiple acquisitions 
and already spatially aggregated; applying this step would 
overcorrect for noise.

While Brandt et al. (2023) described the ARD creation pro-
cess in more detail, we provide an overview of how to prepare 
Sentinel-2 ARD composites using the following steps applied 
independently to 6 x 6 kilometer tiles:

	▪ Clouds and cloud shadow identification following Candra 
et al.’s (2020) and Qiu et al.’s (2019) methods

	▪ Bidirectional reflectance distribution factor correction

	▪ Cloud and shadow removal and gap-filling with 
relative radiometric normalization and inverse distance 
weighted interpolation

	▪ Temporal gap filling using the Whittaker 
smoother (Eilers 2003)

	▪ Super-resolution of 20-m bands to 10-m resolution with a 
CNN (Lanaras et al. 2018)

The analysis-ready mosaics of Sentinel-2 imagery contained a 
single cloud-free image for each month of the year. We con-
verted the 12 cloud-free images into a single median image, 
which showed good results for tropical regions in Brandt et 
al. (2023). During model training, we augmented the training 
dataset to improve the classifier’s ability to generalize across 
temporal and geographic scales. This involved calculating a 
single median image on a different random subset of monthly 
images for each training sample. For example, one sample 
(a median image) could be derived from images in January, 
March, April, and December, while another sample could 
be derived from images in May, June, July, and October. This 
method allowed us to train the model on many median com-
posites of images containing varied seasonal characteristics. 
This standard augmentation practice reduced model overfit-
ting to specific characteristics of the median image. For model 
inference, we directly applied the trained model to the median 
of all monthly images.

We designed a haze correction method during ARD process-
ing to combat the effects of Harmattan haze, which generated 
artifacts along the boundaries of neighboring tiles during 
model inference. We found the model was particularly sensi-
tive to haze-affected imagery, resulting in class confusion or 
inconsistent predictions at tile borders. To address this issue, 
we smoothed boundaries between tile neighbors using Wang 
et al.’s (2020) methods. This strategy was only applied to tiles 
that showed visual inconsistency in the final map product.

Feature extraction
We performed feature extraction to access high-dimensional 
representations, or spatial embeddings, from the TTC model. 
These intermediate frozen layers of the neural network were 
isolated and used in a separate supervised classification task. 
While the exact semantics of these features were not individu-
ally interpretable, we hypothesized they could capture critical 
information about canopy texture, density, or shape that could 
inform related tasks. Tapping into the expertise of an existing 
tree cover model allowed us to leapfrog over the initial stage of 
detecting trees, and instead focus on classification.

The TTC model is a U-Net that takes a bottleneck approach, 
whereby a 10-m resolution input is encoded to coarser 
resolution features and then reconstructed stepwise into a 
10-m resolution output. The model generates features for 
16 separate layers at spatial resolutions of 10, 20, 40, 80, and 
160 m. For the purposes of transfer learning, we selected the 
high resolution (10 m) feature layers from both the U-NET’s 
encoder and decoder. A total of 65 spatial embeddings were 
extracted for input into the land use classification pipeline.
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Texture features
The feature generation process involved computing GLCM 
texture images. A GLCM is a statistical method that charac-
terizes texture that considers the spatial relationship of pixels. 
Image texture is derived from the frequency with which pairs 
of pixels, with specific values and in specific spatial relation-
ships, occur in an image (MATLAB Help Center 2025). 
In the context of land use classification, texture features can 
improve classification accuracy because they focus on spatial 
relationships in a landscape, as opposed to the spectral proper-
ties of a single ground unit. GLCM texture-based mapping 
has proved effective in several efforts to map heterogenous 
agricultural landscapes, detect shrub crops under forest 
canopies, and distinguish crops from native forest (Abu et al. 
2021; Ashiagbor et al. 2020; Numbisi et al. 2019; Pereira et al. 
2022; Sari et al. 2022). Selecting appropriate texture features 
and parameters to perform the GLCM calculation can be 
difficult because of the distinct composition of LULC classes 
and the general lack of guidelines in the field (Mishra et al. 
2019). As such, the existing literature informed our parameter 
selection (Table 2). The authors wrote the GLCM calcula-
tions in Python to derive four texture statistics (dissimilarity, 
correlation, homogeneity, and contrast) for each Sentinel-2 
band (blue, green, red, and near infrared [NIR]). We selected a 
5 x 5 moving window with one pixel displacement to the right 
(zero degree angle). These parameters, including selecting the 
moving window size, balanced computational efficiency with 
the need to capture spatial patterns and distinguish texture 
characteristics within plots.

Model architecture and selection
To select the appropriate algorithm for this supervised per-
pixel classification task, we tested several commonly used 
machine learning approaches for creating land use maps in 
the remote sensing field (Khatami et al. 2016). The tested 
algorithms included Random Forest, support vector machine, 
XGBoost, CatBoost, and Light Gradient Boosting Machine 
(LightGBM). Baseline comparisons of the receiver operating 
characteristic (ROC) curve and the precision recall (PR) curve 
were used to determine which model achieved the highest 
performance. Generally speaking, the performance did not 
vary drastically across machine learning models with the 
subset of training data available at the time of testing, which 
was approximately 50 percent of the final training dataset 
used in this study. CatBoost classifier (Dorogush et al. 2018), 
a gradient boosting algorithm, was ultimately selected due to 
its comparatively higher scores across ROC and PR curves. 
CatBoost is known for its ability to handle imbalanced classes 
and resist overfitting better than existing gradient-boosted 
decision trees like XGBoost and LightGBM (Bentéjac et 
al. 2021; Dorogush et al. 2018). We identified the optimal 
combination of features through a feature selection exercise, 
which is discussed in the following section. We assessed model 
performance throughout the research period to understand 
the impact of additional training batches or adjustments in the 
pre-processing pipeline. We gleaned insights through a review 
of multiple accuracy metrics, but we chose balanced accuracy 
as the main metric for evaluation given the imbalanced nature 
of the training dataset.

Table 2 | Literature review of GLCM texture properties used for land use classification

SOURCE REGION COMMODITY TEXTURE FEATURE WINDOW ANGLES

(Numbisi et al. 2019) West Africa Cocoa 4 GLCM features (contrast, entropy, correlation, 
variance)

5 x 5 (0°, 45°, 90°, and 
135°)

(Abu et al. 2021) West Africa Cocoa 18 GLCM features. GLCM features were not in the top 
10 selected.

3 x 3 (0°, 45°, 90°, and 
135°)

(Descals et al. 2019) Sumatra Oil palm GLCM sum average (band 11), correlation (band 4), 
correlation (enhanced vegetation index [EVI])

10 x 10 and 30 
x 30

unspecified

(Pereira et al. 2022) Guinea Bissau Cashew 18 GLCM features (sum average [SAVG] contrast, 
dissimilarity, inertia)

unspecified unspecified

(Sari et al. 2022) Vietnam Oil palm, rubber 4 GLCM features (mean, variance, homogeneity, and 
contrast)

7 x 7 unspecified

(Maskell et al. 2021) Vietnam Coffee 8 GLCM features 5 x 5 (tested 3, 
5, and 7)

(0°, 45°, 90°, and 
135°)

Notes: A literature review of GLCM texture properties helped identify the correct parameters for land use classification. 
Sources: Abu et al. 2021; Descals et al. 2019; Maskell et al. 2021; Numbisi et al. 2019; Pereira et al. 2022; Sari et al. 2022.
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Tuning and feature selection
We performed a feature selection and hyperparameter optimi-
zation exercise to narrow down the most influential features 
for land use classification. Training with only the most 
important features reduced overfitting and training time, while 
improving accuracy by removing misleading data and noise.

We used CatBoost’s tree-based feature importance method to 
incrementally evaluate and remove features from the training 
set until the accuracy metric no longer improved. Recursive 
feature elimination was performed on the 81 embeddings and 
texture features, not including the 13 Sentinel ARD bands. 
The Sentinel bands were retained in the experiment based on 
their demonstrated predictive value (Brandt et al. 2023). This 
exercise narrowed the feature set down to 40 features that 
explained 85–90 percent of the model’s performance. Identify-
ing the best set of hyperparameters for a given dataset can 
be challenging, so we performed an objective search across a 
variety of values within a search space by using Scikit-learn’s 
RandomizedSearchCV (Pedregosa et al. 2011). The random 
search enabled us to discover hyperparameter combinations 
that allowed us to find a good model configuration as the 
training dataset grew over time.

Accuracy assessment
To evaluate the final classification model, we labeled an 
independent set-aside validation dataset and calculated a 
confusion matrix to obtain accuracy metrics by land use class. 
We collected 1,208 validation points using a stratified random 
sample by land cover class. To determine the sample size for 
each category, we considered the mapped proportion of each 
class and the minimum count of points to produce a suffi-
ciently precise accuracy estimate (FAO 2016). A cushion was 
added to account for the possibility of dropped samples during 
photointerpretation due to low image availability or quality. A 
minimum distance of 10 m was enforced between training and 
validation plots.

We labeled validation points using the same photointerpreta-
tion criteria as training points. The only difference in this 
process was the use of a consensus labeling approach, whereby 
two annotators labeled all samples, and a third party reviewed 
any disagreements. This approach’s goal was to minimize label 
errors and reduce individual annotator bias, given the annota-
tor’s role in labeling both training and validation datasets. 
Similar to the process for labeling training data, an “unknown” 
label category was included in the validation survey to 
capture instances where high resolution imagery was unavail-
able between 2017–2022. If two annotators agreed on an 
“unknown” label, it was dropped from the validation dataset.

Results
Map accuracy and area assessments
After fitting and optimizing the CatBoost classifier, we 
evaluated it against the set-aside validation dataset. The model 
achieved an overall accuracy of 65.27 percent plus or minus 
2.69 percent. The user’s and producer’s accuracy for each land 
use class was estimated at the 95 percent confidence interval 
(Table 3). The CatBoost classifier’s accuracy was assessed using 
a confusion matrix, which highlighted where misclassifications 
occurred for each class (Figure 4).

We used the final CatBoost model to generate land use maps 
and area assessments for all 26 priority districts. Figure 5 
shows the map results for the Twifo Atti-Morkwa district in 
Central Region, Ghana, calling out detail in a selected region 
with various production systems. The map communicates the 
predominance of the agroforestry class, which borders two 
protected areas. The inset illustrates the landscape’s hetero-
geneity, where high-resolution image interpretation indicates 
large industrial oil palm plantations sit alongside monoculture 
smallholdings intercropped with cocoa and other commer-
cial tree crops.

Table 3 | Accuracy assessment of the land use map

LAND USE CLASS USER’S ACCURACY PRODUCER’S ACCURACY OVERALL ACCURACY

Other 70.24% ± 3.76% 89.02% ± 2.86%

65.27% ± 2.69%
Monoculture 49.73% ± 9.73% 85.01% ± 8.54%

Agroforestry 64.75% ± 4.75% 57.52% ± 4.53%

Natural 58.70% ± 7.97% 33.59% ± 5.96%

Source: WRI authors.
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Figure 4 | Confusion matrix

Notes: The confusion matrix corresponds to the final CatBoost model’s performance on the independent validation dataset. The results illustrate which classes saw the most 
confusion.
Source: WRI authors.
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Figure 5 | Map results
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Notes: A) Pixel-based land use map for 26 districts using the CatBoost model. B) District-scale map results for Twifo Atti-Morkwa, home to Twifo Oil Palm Plantations, illustrating 
agroforestry, monoculture, natural, and other (background) land use classes.
Source: WRI authors.
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Table 4 | Area extent (ha) for each priority district in Ghana and total extent for each region

ZONE DISTRICT MONOCULTURE (HA) AGROFORESTRY (HA) NATURAL (HA)

North West Mamprusi Municipal 10 32,540 2,860

Wa East 0 68,180 106,320

Talensi 0 11,100 2,640

Bawku West 0 16,630 2,380

Sissala West 10 41,450 8,660

Builsa South 0 25,810 3,710

Daffiama Bussie Issa 0 17,880 19,310

Sissala East 10 139,900 42,230

Kassena Nankana West 10 20,160 2,530

West Gonja 0 117,770 145,220

Sawla-Tuna-Kalba 0 81,810 118,550

Mamprugu Moagduri 20 51,560 10,150

South Twifo Atti-Morkwa 4,220 63,140 26,360

Sene West 70 54,660 135,930

Sekyere Afram Plains North 150 196,600 95,710

Adansi South 1,070 53,780 16,630

Kwahu South 110 31,160 16,240

Kwahu Afram Plains South 70 73,350 60,140

Kwahu Afram Plains North 80 24,300 18,950

Juaben Municipal 550 12,400 3,140

Bosome Freho 740 41,720 11,940

Atwima Mponua 5,130 159,430 16,010

Assin North 730 66,770 2,960

Asante Akim South 660 97,540 14,790

Kwahu West 160 32,930 4,570

Kwahu East 120 29,990 9,590

NORTH TOTAL 70 624,780 464,570

SOUTH TOTAL 13,840 937,760 432,960

Source: WRI authors.



14  |  

  

Figure 6 | Proportional distribution of each land use system per district  
	   (top: northern districts, bottom: southern districts)
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With the land use map, we calculated the total error-adjusted 
area assessments for each class in our study (Table 4). We 
detected a total of 13,907 ha of monoculture area, 1,562,542 
ha of agroforestry area, and 897,523 ha of natural area in 
the 26 priority districts. We presented the results by zone, 
with 11 districts clustered in the northern Savannah agro-
ecological zone, and the remaining 15 districts clustered in 
the South across Transitional and Deciduous agro-ecological 
zones. Districts with the largest extent of monoculture area 
also contain industrial-scale plantation systems, like teak and 
Cedrela plantations in the Jimira Forest Reserve in Atwima 
Mponua (Forestry Commission 2021) and the Twifo Oil 
Palm Plantations in Twifo Atti-Morkwa. Districts with a 
higher proportion of agroforestry extent are largely located 
in Ashanti, where cocoa production is concentrated (Abu et 
al. 2021) (Table 4 and Figure 6). As expected, districts in the 
northern Savannah zone have low-to-no monoculture produc-
tion systems and a higher proportion of area that belongs to 
the other (background) class (Figure 6).

Contributions of transfer learning  
and texture
This study follows existing literature, which recognizes texture 
properties for their ability to separate tree crops from sur-
rounding land cover and within production systems (Maskell 
et al. 2021). Feature importance scores highlighted these 
texture features’ contribution to the classifier’s ability to learn 
the differences between tree systems. In a pixel-based classifi-
cation exercise that tries to identify systems, a texture feature 
that considers relationships with neighbors is, understand-
ably, helpful for the interpretation. Given their high feature 
importance scores, dissimilarity, and contrast, texture features 
derived from the NIR band were particularly relevant to the 
classification (Figure 7). Texture features often exhibit high 
correlation with one another (Hall-Beyer 2017), which is a 
reason the feature selection exercise was helpful in improving 
accuracy. Figure 7 shows the feature importance scores of the 
top 40 features used in the model, color coded by category 
(Sentinel, embeddings, and texture). The sum of importances 
for all features is normalized to equal 100, with higher scores 
indicating larger effects on the model’s predictive ability 
(Prokhorenkova et al. 2019). Figure 7 shows how embeddings 
and texture features explained approximately 90 percent of the 
model’s performance.

Transfer learning performance gains
We tested our hypothesis about the value of a transfer 
learning-based classification approach using two compara-
tive modeling exercises. The first experiment explored the 
performance gains attributable to incorporating extracted 
spatial embeddings and texture features, particularly given 
the limited size of our training dataset. In other words, we 

Figure 7 | Feature importance for the top 40  
	    selected features
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Figure 8 | Learning curve comparison

Notes: TL = transfer learning in Figure 8. A learning curve comparison illustrates how a CatBoost model trained with transferred features (with TL) achieves higher performance 
with the same number of training samples, evaluated using five-fold cross-validation. 
Source: WRI authors.

wanted to understand whether spatial embeddings’ contribu-
tion substantially accelerated model learning. Due to the 
time-intensive process of acquiring training data, we needed 
to forecast how many labeled training data were required for 
acceptable accuracy. Learning curves illustrate the relation-
ship between learning and experience and can indicate how 
a training dataset’s size can affect model performance. In the 
early research stages, comparing learning curves confirmed 
that adding extracted TTC and texture features could improve 
model accuracy with a low number of training samples.

Figure 8 shows the results of the learning curve comparison 
for two CatBoost classifiers. The first classifier was trained 
using only Sentinel imagery, and the second was trained using 
Sentinel imagery, GLCM texture features, and the extracted 
embeddings from the TTC model. A target accuracy of 
80 percent is shown as a general illustrative goal. The value 
of the model that uses transfer learning is evident as more 
samples are introduced. The results of the test set confirmed 
that training with transfer learning (blue) allowed the model 
to approach the hypothetical target accuracy faster, and with 
fewer training samples, compared to a baseline model (red). 
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Table 5 | Performance comparison with deep learning network

MODEL FEATURE COUNT INPUT SIZE BALANCED ACCURACY

CatBoost classifier 40  14 x 14 patches 0.8605

CNN 13 14 x 14 patches 0.7379

Source: WRI authors.
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We performed this experiment to validate our early hypoth-
esis that transfer learning improves performance with fewer 
labeled samples. The baseline model without transfer learning 
exhibited a slight downward trend in accuracy as training 
samples increased. This finding likely reflects the model’s 
sensitivity to label noise and class confusion in the more 
heterogenous dataset, as well as transfer learning’s potential 
stabilizing effect (blue lines in Figure 8).

Our second experiment involved benchmarking the CatBoost 
model, trained with extracted features and GLCM texture 
features, against a standard deep learning approach. For this 
experiment, we implemented a CNN with a U-Net architec-
ture, similar to the one Brandt et al. (2023) used. We trained 
the CNN using the same features, labels, and train-test split 
to ensure a direct comparison. We evaluated the model over 
10 epochs using pixel-wise cross entropy loss and standard 
accuracy metrics.

To compare the CatBoost classifier’s performance with a 
standard deep learning algorithm, we looked at the bal-
anced accuracy score for the entire validation set. Balanced 
accuracy was selected due to the slight class imbalance. Early 
comparative tests confirmed the transfer learning approach, 
incorporating extracted features and texture properties, 
offered a performance advantage for this task (Table 5). 
These exercises supported the study hypothesis that a transfer 
learning approach could improve performance when given 
limited labeled data (training samples) and a heterogenous 
class structure.

Discussion
Classifier performance
The results of the classification exercise and associated model 
comparisons demonstrate how transfer-learned features can 
help distinguish between tree-based systems in Ghana.

The model experienced confusion between the natural and 
agroforestry classes, which was expected due to the similar 
spectral signatures and spatial organization of shaded cocoa 
and open canopy forests. This finding could also be a mani-
festation of the fact that individual trees of the same species 
belonged to both of these land use classes. Most false positives 
for the natural class are classified as agroforestry and vice 
versa. The inclusion of diverse agroforestry systems within a 
single class, specifically shaded cocoa and cultivated shea, is 
likely responsible for low precision. While priority districts in 
eastern and western Ghana are predominantly comprised of 
cocoa agroforestry, agroforestry parkland systems (cropland 
areas with dispersed trees) characterize much of the savannah 
region of the northern priority districts. Low producer’s accu-
racy for the natural class, often misclassified as agroforestry, 
likely stems from confusion in the North, where shea trees 
grow in both wild and agroforestry systems. In fact, stud-
ies analyzing shea tree populations across different land-use 
types ( Jepsen et al. 2024) have found a higher density of shea 
trees in uncultivated bushland areas compared to agricultural 
land. Local farmers in Ghana even describe shea trees as wild, 
since they often stem from natural regeneration rather than 
intentional planting efforts. The confusion between natural 

Figure 9 | Sentinel-2 spectral signature analysis

Notes: nm = nanometers in Figure 9. This figure shows the Sentinel-2 spectral signature of four representative tiles of the target land use classes. The curves illustrate variation in 
average surface reflectance across Sentinel-2 bands (B02-B12). 
Source: WRI authors
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and agroforestry systems in the final map product is caused by 
the presence of shea trees in uncultivated bushlands, as well as 
highly managed agricultural systems.

Initial exploratory analyses of the Sentinel-2 optical data 
hinted at this separability problem between classes and across 
regions in Ghana. Figure 9 shows the spectral signature of 
Sentinel-2 ARD for four tiles. Each tile represents a target 
land use class, including two subsets of the agroforestry class 
(cocoa and shea agroforestry systems). The graph shows the 
mean surface reflectance value across the 10 Sentinel-2 bands 
(B02-B12). Recognizing some inherent limitations to this 
analysis (Sentinel-2 images could come from varying seasons 
with varying quality, and no tile is solely comprised of a single 
land use class), we were still confident these results showed 
enough distinction in spectral signature alone to perform a 
decent classification. At the same time, this exercise under-
scored separability challenges for certain agroforestry system 
types. Despite being in the same target class, the spectral sig-
natures of the two agroforestry systems are relatively unique. 
Moreover, the spectral signatures of an agroforestry shea 
system and a natural parkland show relative similarities. The 
low degree of separability for these two northern Savannah 
zone systems, which make up the largest proportional land 
area in the final map, are the reason we see so much confusion 
between the natural and agroforestry classes in the confusion 
matrix (Figure 9). One step to improve class-specific precision 
and recall is creating training data for more narrowly defined 
subclasses that reflect the distinct structural and spatial char-
acteristics of different agroforestry systems.

Of all the land use classes, the monoculture class had the 
lowest accuracy and highest margin of error. Monoculture 
samples only represented 18 percent of the training data. To 
account for class imbalance in the training data, we assigned 
higher weight to underrepresented classes when training the 
CatBoost model. However, the low proportion of training data 
could have affected the model’s ability to learn this minority 
class, especially for smallholder oil palm and other monocul-
ture tree crops. The high producer’s accuracy relative to the 
other two tree classes (agroforestry and natural) indicates 
most of the positives were true positives (correctly identified). 
The low user’s accuracy of the monoculture class stems from 
confusion with the agroforestry class. Judging by the large 
industrial monoculture farms identified in the map (Figure 
5), this error is less likely to occur at the industrial plantation 
scale. It is more likely to occur in irregularly shaped, small-
holder farms that make up 93 percent of oil palm concessions 
by area in Ghana (Meijaard et al. 2018).

Sources of error in ground truth labeling
We took multiple steps to mitigate the risk of poor label 
quality, such as developing a rigorous photointerpretation 
protocol, gathering input from experts in Ghana, and using 

algorithmic label review with Cleanlab. To gather sufficient 
training and reference data, this study relied on photointerpre-
tation and image-drawn labels of complex agricultural systems 
at small scales. Despite these measures, training data labels 
were subjected to the annotators’ (in this case, this study’s 
authors) expertise and judgment. These data labels also relied 
on the availability of high-resolution imagery to support visual 
interpretation of tree dynamics in the study year. If a high-
resolution image was not available for 2020, an image from 
an earlier or later year was used to determine the appropriate 
pixel label. This approach often resulted in a temporal mis-
match, compounded by the effect of using different source 
imagery to inform the labels and perform the classification. 
For this study, we used Google Earth Pro 10–15 cm resolution 
data to inform the annotation and Sentinel-2 data at 10-m 
resolution to produce maps (Estes et al. 2022). In the context 
of Ghana’s rapidly evolving agricultural frontier, this problem 
is particularly relevant because a land cover change could 
occur in the time between when the two images were taken. 
This means even accurately drawn labels have the potential 
to introduce error during model training and assessment 
(Estes et al. 2022).

Errors observed in the other (background) class, where the 
reference label indicated agroforestry or natural systems, are 
likely attributable to annotation ambiguity or interpreta-
tion. This result could happen in scenes where it was unclear 
whether a pixel intersected a tree or sparse shrubbery. These 
discrepancies could also reflect seasonal differences in the 
imagery used during photointerpretation.

Variability in the agroforestry class
Compounding the difficulty in visually distinguishing natural 
and cocoa agroforestry systems, a key constraint to accurate, 
operational land use mapping lies in fundamental inconsis-
tencies in definitions (Njomaba et al. 2025; Rosenstock et al. 
2019). Varied interpretations of what exactly is an agroforestry 
system limit the availability of harmonized reference data that 
can train machine learning models. These differing interpreta-
tions also hinder comparative analyses across remote sensing 
products. Since clear definitions form the foundation of 
technical methodologies, varying definitions can result in over 
or underestimations of extent.

In one of the first remote sensing-derived efforts used to 
quantify the extent of agroforestry at a global scale, Zomer et 
al. (2014) defined agroforestry as agricultural land with tree 
cover greater than 10 percent. While an important advance-
ment, this approach depends on the accuracy of an underlying 
agricultural land cover classification. The consequence is an 
underrepresentation of agroforestry systems found on land 
that meet the forest definition, such as in Cameroon, where 
cocoa agroforests can exhibit over 80 percent tree cover 
(Rosenstock et al. 2019). Lesiv et al. (2017) conducted another 
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global-level effort to map agroforestry alongside other forest 
management classes. The researchers defined agroforestry 
as managed forests on “other landscapes.” This agroforestry 
definition includes trees in cropland, pasture, or urban areas, as 
well as shifting cultivation and fruit trees such as olives, apples, 
nuts, and cocoa (Lesiv et al. 2017). In their research, den 
Herder et al. (2017) mapped the distribution of agroforestry 
across the European Union, noting how their comparatively 
higher estimates of agroforestry extent may have arisen from 
underlying assumptions and criteria. In contrast to studies 
that use land cover criteria as part of their agroforestry defini-
tion, our study recognizes that agroforestry can occur across 
nearly all land cover types (Daniel et al. 2018). We also use a 
broader definition focused on canopy strata and planting pat-
terns. Since this study focuses exclusively on the classification 
of spectral and textural features in satellite imagery, we exclude 
an important component of the agroforestry definition that 
considers intentionality: agroforestry systems are intention-
ally established and managed (Terasaki Hart et al. 2023). 
This variability in how agroforestry is defined across remote 
sensing products highlights the extent to which underlying 
definitions greatly influence area estimates (den Herder et al. 
2017). While this study’s objective does not propose a national 
legend or set of land cover definitions, we hope these findings 
shed light on the opportunities and limitations in designing a 
system that uses transfer learning to augment remote sensing 
machine learning classification techniques.

Conclusion
This study introduces a transfer learning approach to classify 
tree-based systems, leveraging extracted spatial embeddings 
from a high-performing neural network to improve clas-
sification accuracy in label-scarce environments. We apply 
a CatBoost classifier to a combination of Sentinel imagery, 
GLCM texture features, and extracted spatial embeddings to 
classify four land use classes: natural, agroforestry, monocul-
ture, and other (background). Through comparative modeling 
and feature selection exercises, we demonstrate that includ-
ing spatial embeddings and texture features improves model 
performance. We demonstrate this method for 26 priority 
districts in Ghana, resulting in a 10-m resolution land use 
map for 2020. Area assessments reveal a total of 13,907 ha 
of monoculture area, 1,562,542 ha of agroforestry area, and 
897,523 ha of natural area in the 26 districts.

Using embeddings from the TTC algorithm in the predic-
tion pipeline allowed us to leapfrog over standard approaches 
to develop 10-m resolution land use maps for Ghana. We 
confirmed this hypothesis through performance comparisons 
between our final CatBoost model and a CNN, as well as a 
CatBoost classifier trained without embeddings. In piloting 
the transfer learning method in Ghana, we hope to contribute 
to discourse around developing national land use definitions 
and their associated remote sensing characteristics. This study 
presents an approach that uses spatially aware texture features 
to perform a system classification that is agnostic to species. 
In doing so, we aim to identify a broader set of structural and 
spatial patterns through this system-level framing to address 
the absence of studies that focus on detection beyond a single 
commodity type. We propose this approach for its relevance 
and potential application outside of the immediate study area 
used in this paper. Additional training and reference labels in 
the target expansion areas are needed to expand this method 
to new geographies. Further research could focus on using an 
automated approach to gather high-quality training samples, 
such as using a label propagation algorithm. This study derived 
texture features directly from spectral bands. Future work 
could explore texture analyses from vegetation indices, such as 
the normalized difference vegetation index.

We also build on Brandt et al.’s (2023) novel contributions by 
capitalizing on their preprocessing pipeline used to produce 
cloud-free, analysis-ready composites of Sentinel imagery. As 
the TTC data expand in temporal coverage (2017–2024) in 
the coming years, the decision to use a methodologically com-
patible processing pipeline enables future harmonization with 
TTC change detection applications. Currently, large-scale tree 
cover datasets, like those of Brandt et al. (2023) and Hansen et 
al. (2013), do not distinguish between natural and agricultural 
trees, which limits their ability to identify drivers of tree cover 
gain or loss. Our findings suggest transfer-learned spatial 
features from the TTC model offer value beyond their original 
predictive task and also represent a scalable path forward for 
broader restoration monitoring efforts. We hope this initial 
investigation offers a useful starting point for remote sensing 
and machine learning practitioners who seek to apply transfer 
learning when designing datasets that monitor the extent of 
agricultural and natural trees.
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