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Introduction

Earth observation data that can differentiate between natural
and agricultural trees are crucial to effectively assess ecosystem
services, commodity-driven deforestation, and restoration
progress. While natural and agricultural tree systems appear
visually similar in satellite imagery, they contribute in notably
different ways to biodiversity and climate change mitigation
(Naudsts et al. 2016). Accurate and reliable information about
the type and extent of these systems is critical to understand
land use dynamics and ensure that national restoration targets
are credibly monitored and reported. In Ghana, distinguish-
ing between natural and agricultural tree systems remains
uniquely challenging because of multiple factors. These factors
include high spectral similarity between certain systems; the
small minimum mapping unit required to capture heterog-
enous, smallholder agricultural landscapes; and challenges
such as persistent cloud cover and haze.

We present a transfer learning approach to classify tree-based
systems. This approach leverages extracted spatial embeddings
from a high-performing neural network to improve classifica-
tion accuracy in label-scarce environments. We refer to label
scarcity as the limited availability of consistent, high-quality
training labels, particularly due to ambiguity in class defini-
tions for complex systems like agroforestry. Building on
previous efforts to model tree extent across the tropics (Brandt
et al. 2023), we explore whether the spatial features extracted
from Brandt et al.’s (2023) convolutional neural network
(CNN) can be repurposed to support a distinct but related
downstream task. We piloted the approach in Ghana, as part
of a multi-year restoration monitoring partnership between
World Resources Institute (WRI) and Ghana’s Environmen-
tal Protection Authority (EPA).

To test our hypothesis, we applied a gradient boosting
classification algorithm (CatBoost) to a combination of
Sentinel-2 images, spatial embeddings, and gray-level co-
occurrence matrix (GLCM) texture features derived from
Sentinel images. Referencing existing efforts from Ghana’s
remote sensing community (Abu et al. 2021; Ashiagbor et al.
2020; Benefoh et al. 2018; Numbisi et al. 2019), we deter-
mined a set of approaches and discrete criteria to capture our
target land use classes, which reflect the structure of different
tree-based systems. We assessed whether using extracted
embeddings and GLCM texture features enhances model
learning. We performed benchmarking against a standard
deep learning technique and a CatBoost model trained
without embeddings. Through a feature selection exercise, we
validated the contribution of texture and embedding features
to model performance.

The transfer learning method was demonstrated across 26
priority administrative districts that Ghana’s EPA identified.
The final product is a 10-meter (m) resolution land use map
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for 2020 that distinguishes between tree-based systems, with
the goal of informing future efforts to distinguish natural and
planted vegetation using remote sensing.

Challenges

In the Ghanaian context, three key challenges affect the ability
to develop accurate land use maps that distinguish between
natural and planted tree systems. The first challenge is the
limited availability of high-quality optical satellite imagery.
Persistent cloud cover and haze, which reduce the accuracy

of optical imagery, can cause low-quality images. While the
dry season (December to March) may offer more cloud-free
imagery, this season brings Harmattan haze, which is caused
by dust-laden winds originating from the Sahara Desert.
Harmattan winds can create a haze effect in optical remote
sensing imagery, due to the winds suspending dust particles in
the atmosphere for extended periods of time. However, some
studies suggest the spectral distinction between certain vegeta-
tion (such as cashew and forest) can become more pronounced
during the dry season, making the vegetation easier to dif-
ferentiate (Pereira et al. 2022). This seasonal tradeoff between
imagery availability and class separability underlines how the
timing of image acquisition can have a sizable impact on the
detectability and classification of certain tree systems.

'The second challenge is deciphering trends within Ghana’s
highly diverse agricultural landscape. Half of smallholder
agricultural systems in Africa are smaller than 1 hectare (ha)
(Estes et al. 2022). Small-scale oil palm plantations vary

in size across the tropics, but they are noticeably smaller in
Ghana, where they range from 0.5 to 5 ha (Chamberlin 2008).
To classify small-scale agricultural activity, a small minimum
mapping unit is necessary for remote sensing-based datasets
to capture the high spatial variability in land use dynamics,
irregular field boundaries, and heterogenous smallholder
characteristics. These characteristics increase the potential for
error when creating land use maps.

'The third challenge in distinguishing between natural and
planted tree systems in Ghana relates to the structural and
spectral similarity between shaded cocoa plantations and
open canopy forests. Certain agroforestry systems, such as
silvopastoral systems, boundary plantings, home gardens,

and woodlots (Daniel et al. 2018), can be easier to detect

due to their clear and distinguishable spatial patterns. In
contrast, agricultural crops sit under existing or intentionally
planted shade trees in shaded cocoa plantations, resulting

in multi-strata canopy structures that closely resemble open
canopy forests in satellite imagery. This structural and spectral
similarity makes these plantations difficult to isolate from
neighboring forests and other tree crops using optical imagery

alone (Abu et al. 2021; Ashiagbor et al. 2020; Benefoh et al.
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2018). The presence of the same tree species in both shaded
cocoa plantations and open canopy forests also accounts

for these spectral similarities. Farmers consistently rank
Terminalia superba and Terminalia ivorensis among the top
preferred shade tree species across all cocoa production stages
(Asigbaase et al. 2025). These are also two dominant species
in Ghana’s forests, especially in the moist semi-deciduous
ecological zone (Hall and Swaine 1981). Ghana is uniquely
known within the remote sensing community for this class
separability problem, with studies finding negligible differ-
ences between the spectral signature of Ghana’s natural forests
and full sun or shaded cocoa systems compared to the same
systems in Ecuador (Filella 2018). The spectral similarities
between agroforestry and open canopy natural systems result
in low classification accuracy among existing land use and
land cover maps of Ghana (Ashiagbor et al. 2020). These
three remote sensing challenges underscore the difficulty in
using traditional classification approaches to map land use

in this country.

Existing approaches

Due to its strong performance in label-scarce environments,
transfer learning is gaining traction in the machine learning
field. Transfer learning techniques involve applying the knowl-
edge from a pre-trained algorithm to a separate but related
task. In a remote sensing context, CNN-based approaches
map input optical imagery to output map classes using spa-
tially explicit feature maps at various spatial resolutions. These
features transform the input into a high dimensional feature
space with rich representations of the input imagery, which
can be used as a starting point for other downstream tasks

via transfer learning. Transfer learning approaches can reduce
expensive and time-consuming training steps, while also
minimizing the need for a large number of labeled samples to
achieve strong performance.

Several types of transfer learning techniques have been applied
in the field of remote sensing for land cover mapping (Ma

et al. 2024). A typical approach to transfer learning involves
adapting a pre-trained algorithm by fine-tuning its param-
eters and re-training layers to perform a new prediction task.
However, transfer learning can also involve extracting learned
features from new data and using the features as input to a
new model. Alem and Kumar (2022) explore how a bottleneck
feature extraction technique applied to three pre-trained
models can improve classification performance for land use
and land cover (LULC) classification in remote sensing
images. Hamrouni et al. (2021) illustrate how adapting a local
classifier with new relevant training samples can help classify
poplar plantations at scale in Sentinel-2 imagery.

Several recent remote sensing-based efforts have made signifi-
cant progress in mapping agroforestry and plantation systems
across Ghana and the broader West Africa region. However,

most research has focused on identifying a single tree com-
modity, rather than a system classification that is agnostic to
species. To track the rapid expansion of oil palm production

in Ghana, Abramowitz et al. (2023) applied a Random Forest
classifier to Sentinel imagery to differentiate closed-canopy
industrial from smallholder oil palm. Several studies have
explored methods to distinguish natural from agroforestry
land uses at a national scale using freely available Sentinel-1
and Sentinel-2 imagery. Abu et al. (2021) applied a Random
Forest model to detect cocoa plantation encroachment into
protected areas in Cote d’'Ivoire and Ghana, using GLCM
texture features to detect small-scale cocoa farms. Ashiagbor
et al. (2020) combined a pixel and object-based approach

to distinguish agroforestry cocoa from forest and other land
use classes in Ghana. Numbisi et al. (2019) also explored
using texture features to discriminate cocoa agroforests from
transition forests in Cameroon. Benefoh et al. (2018) applied
an image-fusion technique to isolate cocoa plantations from
other vegetation and estimate cocoa-led deforestation. By
attempting to detect and classify broader systems rather than a
single commodity type, we build on the technical and defini-
tional foundations these researchers established, particularly in
using GLCM texture metrics and operational remote sensing-
based definitions of agroforestry.

In 2023, following extensive model development and research,
Brandt et al. (2023) released the Tropical Tree Cover (T'TC)
dataset, a Sentinel-based tree cover product that covers 2020.
'The dataset was generated using a multi-temporal CNN that
achieved 94 percent overall accuracy across 4.35 billion ha in
the tropics. The dataset shows consistently high performance
across multiple land types, including areas with open canopy
forest, dryland, and cropland. As a 10-m resolution product,
TTC outperformed existing 30-m resolution datasets in
detecting small patches of tree cover, particularly in complex
and fragmented landscapes. Given this strong performance,
we hypothesized that the spatial embeddings extracted from

a model adept at tree detection across varied land cover types
could be repurposed to inform a separate but related exercise.
One significant shortcoming of the T'TC dataset is the lack
of differentiation between natural and agricultural tree cover.
'This distinction is critical for restoration monitoring applica-
tions, as gains in tree cover cannot be meaningfully assessed
without understanding whether they result from a success-

ful restoration intervention or agricultural expansion. The
inability of most global- or tropical-scale tree cover products
to differentiate between natural and planted trees (Fagan et al.
2022) limits their relevance for restoration monitoring. This
study explores the potential to use embeddings from the TTC
model to inform tree-based system classification in Ghana. By
using a “light touch” transfer learning approach that integrates
TTC spatial embeddings in a new classification pipeline, we
extend the T'T'C dataset’s usefulness (Brandt et al. 2023),
while ensuring methodological compatibility to lay the foun-
dation for TTC’s future change detection applications.
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Methods
Study area

We conducted this study across 26 administrative districts,
spanning 8 of Ghana’s 16 regions. The 26 administrative
districts form part of an ongoing effort by Ghana’s EPA

to monitor restoration progress and streamline integrated
landscape management plans. The target districts were selected
as priority areas based on their locations within biological cor-
ridors, as well as land degradation and illegal mining pressures
(Pers. Comm. 2023a). The following districts were included:
Adansi South, Asante Akim South, Assin North, Atwima
Mponua, Bawku West, Bosome Freho, Builsa South, Daffiama
Bussie Issa, Juaben Municipal, Kassena Nankana West, Kwahu
Afram Plains North, Kwahu Afram Plains South, Kwahu
East, Kwahu South, Kwahu West, Mamprugu Moagduri,
Sawla-Tuna-Kalba, Sekyere Afram Plains North, Sene West,
Sissala East, Sissala West, Talensi, Twifo Atti-Morkwa, Wa
East, West Gonja, and West Mamprusi Municipal.

Ghana’s landscape consists of five general agro-ecological
zones: Savannah, Transitional, Deciduous, Evergreen, and
Coastal Savannah (Abbam et al. 2018) (Figure 1). This study
focuses on two main groups of districts: the southern group
and the northern group. The southern group sits between
latitudes 5°N and 8°N and stretches from the Deciduous
zone to the Savannah-forest Transitional zone. The northern
group sits between latitudes 8°N and 11°N and stretches
from the Savannah-forest Transitional zone to the Savannah

Figure 1| Study area map

zone. These two district groups cover several forest and game
reserves, protected areas, and wildlife corridors, as well as a
highly dynamic and evolving agricultural landscape.

Southern Ghana, dominated by deciduous and transitional
forests, is well-suited to cocoa trees, which prefer a high
average annual rainfall, moderate temperatures, and low
climatic variability (Osei-Gyabaah et al. 2023). Other tree
crops, such as oil palm, cashew, and shea, are commonly
grown in the cocoa belt, thus may be intercropped with cocoa.
Oil palm and rubber monoculture plantations are generally
concentrated in the South and Southwest, due to the favorable
climatic conditions.

Moving northward, the climate becomes drier, transitioning
into savannah woodland. The Savannah zone is characterized
by lower rainfall, higher temperatures, and greater climatic
variability (Abbam et al. 2018), which offer less favorable
conditions for cocoa trees. Cashew, acacia, baobab, and shea
are common drought-resistant trees in northern Ghana that
are often used for agroforestry (Moomen et al. 2024). Agri-
culture in the region is mainly rain-fed and faces challenges
during the dry season from November to March, also called
the Harmattan. Strong winds from the Sahel bring dust, dry
conditions, and extreme temperature fluctuations, increasing
wildfire risks and disrupting farming.
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Land use definitions

We distinguished four land use classes: monoculture, agro-
forestry, natural, and other (background) (Table 1). This
approach differs from traditional land cover or commodity-
focused mapping exercises by focusing on a tree-based system
definition, rather than an individual crop or simple canopy
presence. We focus on the classification of tree-based systems
and do not include food crops, such as maize, rice, cassava, or
plantain, in the agricultural classes (monoculture or agrofor-
estry). Photo interpreters distinguished the classes using key
characteristics, including tree cover, canopy structure, and
spatial arrangement.

Training data

Collection and photointerpretation

To pinpoint landscapes suitable for collecting training data for
our designated classes, we referenced existing forest and tree
crop datasets. We referenced four different vector datasets and
one field survey in this process.

First, the Spatial Database of Planted Trees (SDPT) (Richter
et al. 2024) is a living database of spatial information about
the locations of planted forests and tree crops throughout

the world. It includes data that national governments, non-
governmental organizations, researchers, or a combination of
sources provided. In Ghana, SDPT contains comprehensive
information about oil palm and rubber plantations, which

was used to sample training points for the monoculture class.
Second, the West Africa Cocoa (WAC) dataset contains cocoa

Table 1 | Definitions used for the mapped land use classes and example tree crops

LAND USE CLASS DEFINITION LABELING CRITERIA EXAMPLE

Other (background)

Areas containing less than 10% tree
cover.

Monoculture Agricultural tree systems with a single
canopy stratum and no productive or

managed understory.

Agroforestry Agricultural tree systems with natural
or planted trees that form 2 distinct

canopy strata.

Natural Primary and secondary woody
vegetation that has not been
deliberately planted or managed by

humans.

Source: Ashiagbor et al. 2020; WRI authors.

Surfaces appear built, bare, or sparsely
vegetated.

Typically represented by human
settlement areas, bare land,
grasslands, water, and mining areas.

Crown shape and size is relatively
consistent, and a distinct planting
pattern can be detected.

Typically represented by oil palm and
rubber plantations.

Crown shape and size vary. Area
shows signs of disturbance (harvest,
regrowth) across years.

Typically represented by shadow
systems, like cocoa grown under shade
trees or shea serving as shade trees
for crops.

No planting pattern or distinct spatial
organization. Areas do not exhibit
disturbance across years.

Typically represented by forest
reserves and protected areas.
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polygons across Cote d’Ivoire and Ghana. Leading cocoa and
chocolate companies sourcing directly from these locations
supplied the polygons (Schneider et al. 2023). Since cocoa in
Ghana is often grown in shaded agroforestry systems, WAC
polygons were used to sample training points for the agro-
forestry class. Third, the World Database on Protected Areas
(WDPA) contains spatially referenced information about
legally protected areas, including nature reserves, wilderness
areas, national parks, and gazetted forests (Bingham et al.
2019). WDPA forest reserve polygons in Ghana were used

to sample training points for the natural tree class. Fourth,
Ghana’s Resource Management Support Centre (RMSC)
provided field-collected samples that contained locations

for shea, mango, cashew, and citrus tree crops (Pers. Comm.
2023b). RMSC collected the field data between May and July
2022 across five basins in Ghana: Black Volta, Pra, Sene, Tano,
and White Volta.

To derive training data, we first calculated the centroid of each
polygon in our reference forest and tree crop datasets. Then we
performed a secondary photointerpretation step to ensure the
samples were assigned an accurate label for 2020, our year of
interest. Since the reference vector datasets came from various
years, the photointerpretation step was critical to address any
temporal inconsistencies (land use change) and ensure that
labels aligned with our land use definitions. As an example,
WDPA forest reserve polygons were referenced to gather
training samples for the natural class; however, Ghana permits
forest plantations to be established within reserves, meaning a

Figure 2 | Photointerpretation schema

teak or eucalyptus plantation could likely be present in these
areas (Forestry Commission 2021). The photointerpreta-
tion step ensured we accurately labeled these samples in the
monoculture, rather than natural, land use class.

Photointerpretation surveys were prepared for per-pixel anno-
tation using Collect Earth, an online tool (Saah et al. 2019)
(Figure 2). This study’s authors performed the annotation.
We developed a labeling guide in collaboration with govern-
ment stakeholders, photointerpretation specialists, and subject
matter experts. We drew on existing literature, field data,

and spatial datasets to ensure consistency and accuracy. Only
10-m resolution Sentinel imagery was available on the Collect
Earth platform, so annotators also referenced high-resolution
imagery, accessed through Google Earth Pro, to support the
photointerpretation exercise. Google Earth contains a large
collection of imagery (satellite, aerial, three-dimensional,

and street view) with varying resolutions, ranging from 30 m
per pixel to 10-15 centimeters (cm) per pixel in some areas
(Google n.d.). The Collect Earth surveys overlaid a 14 x 14
gridded plot on the centroids. Thus each point was spaced at
10-m intervals to create a 140 x 140-meter plot (Figure 2).
Annotators classified each Sentinel-2 pixel in the plot into a
land cover class according to the definitions outlined in Table
1. Annotators used information about crown shape and size,
spatial patterns, and contextual indicators—like proximity

to infrastructure and disturbance over time—to inform their
classifications. Since some samples remained extremely chal-

lenging to classify due to poor image availability and quality,

@ Monoculture

Agroforestry

® Natural Unknown

Notes: Example of photointerpretation plots across typical scenes of agroforestry, monoculture, and natural systems. The scale, number, and design of gridded plots are illustrated

for visual effects and are not consistent with the schema used in this study.
Source: WRI authors.
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an “unknown” label category was included in the Collect
Earth survey to capture these instances. High-resolution
imagery was considered unavailable if there were no images
for the plot between 2017-2022, or if images could not be
interpreted due to haze or cloud cover. In these scenarios,
the entire plot was marked “unknown” and dropped from the
training batch.

Quality assessment

Improving label quality is one of the most important means
to increase model accuracy (Estes et al. 2022). Consider-

ing the complexity of photointerpretation and likeness
between certain land use classes, we conducted a data and
label assessment to minimize annotation error that may

have been introduced in the training dataset. Cleanlab is

a tool that algorithmically detects data and label issues in
machine learning datasets (Northcutt et al. 2021). Cleanlab
automatically detects label, outlier, and duplicate issues using
a confident learning framework. Label issues allow users to
identify where there might be discrepancies in their annota-
tions. Confident learning can detect these issues by identifying
examples where the predicted class consistently disagrees with
the annotator’s given label, even when the model is confident.
Duplicate issues refer to two or more samples (pixels) that
exhibit extreme similarity, relative to the rest of the dataset.
Near duplicates can negatively impact model generalization
and lead to overfitting, because duplicative examples can be
unintentionally emphasized during model training. Outlier
issues refer to samples that are extremely different from the
rest of the dataset, such as rare or anomalous instances. In our
case, a large portion of the outlier issues belonged to pixels in
the other (background) class, which is reasonable consider-
ing this is the only class that includes non-vegetation pixels
and encompasses urban land covers. The Cleanlab assessment
was performed at the pixel scale, meaning each pixel was
individually scored for label, outlier, and duplicate issues. We

Figure 3 | Machine learning pipeline

reviewed the assessment results at the plot level (for all 196
pixels in each plot) to determine if the entire plot introduced
confusion into the model and should be removed. This analysis
allowed us to identify 28 plots (totaling 5,488 pixels) where

all 196 pixels in the plot were affected by label issues. We also
identified 27 plots where label issues affected a majority of the
pixels (at least 180 of 196). We chose to drop all 55 plots from
the training data. We decided against dropping samples with
outlier issues, as they had the potential to contain important
information for the other (background) class. The Cleanlab
assessment also flagged six full plots with near duplicate issues.
We chose to drop all these plots, except the example with the
lowest near-duplicate score. The near-duplicate score assigned
to the sample was determined by its proportional distance to
its nearest neighbor (Northcutt et al. 2021). In most cases,

the flagged plots came from the same training data batches,
signaling consistency in the type of data that introduced
confusion or error.

Final training dataset

To produce the final training dataset, we removed 242 plots
that were labeled “unknown,” 118 plots that had no analysis-
ready Sentinel imagery for 2020, and 60 plots that were
flagged during the Cleanlab assessment. The final training
dataset was comprised of 976 plots, containing 191,296
pixels. The proportion of points in each class was 18.6 percent
monoculture, 37.8 percent agroforestry, 16.9 percent natural,

and 26.6 percent other (background).

Feature generation

'The predictive features for the classification task included
Sentinel-1 radar and Sentinel-2 optical imagery for 2020,
spatial embeddings extracted from the CNN underpinning
the T'TC dataset, and texture features. Texture features were
extracted from Sentinel-2 imagery using a GLCM analysis

CNN

DATA INPUTS PREPROCESSING MODEL DEVELOPMENT MODEL DEPLOYMENT POST PROCESSING
Experiments
: ime ’ 560
o Data Data Feature S Dat: Cod
¢ ata engineering ata ode « Noise reduction
ingestion || preparation || (GLcm . Connected
Spatial Sentinel ARD Labels texture) component analysis Mosaic
embeddings
Model
TROPICAL TREE COVER ’ e . ’
“’DATA vewswow\\

\ controL |
\ /

/

Notes: The machine learning pipeline takes Sentinel ARD, spatial embeddings, and labels as input, then performs preprocessing, classification, and postprocessing steps. A model
development stage is also represented, including hyperparameter tuning, feature selection, and evaluation using a version control system to manage experiments.

Source: WRI authors.
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method. Each training sample consisted of 13 optical and
radar Sentinel bands, 65 embeddings, and 16 GLCM texture
features combined as a 94-band input. These 94 input features
were fed into a classification pipeline to assign a land use class
to each pixel. Figure 3 shows the machine learning pipeline,
including pre- and post-processing steps. This section further
details how the 94 input features were produced. The authors
performed all data processing, preparation, and classification
steps using Python and associated geospatial libraries.

Sentinel analysis ready data

Sentinel-1 and Sentinel-2 images were acquired through

the Sentinel Hub Application Programming Interface. The

13 Sentinel analysis ready data (ARD) bands contained four
Sentinel-2 bands at a 10-m resolution, six Sentinel-2 bands at
a 20-m resolution, two Sentinel-1 bands at a 10-m resolution,
and a digital elevation model (DEM) from the Shuttle Radar
Topography Mission (Farr and Kobrick 2000). We selected
the best monthly 10- and 20-m bottom-of-atmosphere (L2A)
Sentinel-2 image based on cloud cover. We then accessed the
image angle from the Sen2Cor scene classification data (Louis
et al. 2016). Finally, we acquired the monthly composite of
vertical transmit/vertical receive (VV') and vertical transmit/
horizontal receive (VH) ground range detected (GRD)
Sentinel-1 observations for all of Ghana throughout 2020.
Additionally, we generated monthly ARD composites of Sen-
tinel-2 and Sentinel-1 imagery from the raw imagery available
prior to analysis. We created all ARD using Python’s scientific
computing libraries: NumPy 1.18.0 (Harris et al. 2020) and
SciPy 1.7.3 (Virtanen et al. 2020).

The Sentinel-1 ARD composites were comprised of the
monthly median of the decibel gamma naught VV and VH
GRD data, processed with no speckle filtering. Speckle filter-
ing is typically not applied to temporally aggregated GRD
data, since this filtering is a composite of multiple acquisitions
and already spatially aggregated; applying this step would
overcorrect for noise.

While Brandt et al. (2023) described the ARD creation pro-
cess in more detail, we provide an overview of how to prepare
Sentinel-2 ARD composites using the following steps applied
independently to 6 x 6 kilometer tiles:

B Clouds and cloud shadow identification following Candra
et al.’s (2020) and Qiu et al.’s (2019) methods

B Bidirectional reflectance distribution factor correction

B Cloud and shadow removal and gap-filling with
relative radiometric normalization and inverse distance
weighted interpolation

B Temporal gap filling using the Whittaker
smoother (Eilers 2003)
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B Super-resolution of 20-m bands to 10-m resolution with a
CNN (Lanaras et al. 2018)

'The analysis-ready mosaics of Sentinel-2 imagery contained a
single cloud-free image for each month of the year. We con-
verted the 12 cloud-free images into a single median image,
which showed good results for tropical regions in Brandt et
al. (2023). During model training, we augmented the training
dataset to improve the classifier’s ability to generalize across
temporal and geographic scales. This involved calculating a
single median image on a different random subset of monthly
images for each training sample. For example, one sample

(a median image) could be derived from images in January,
March, April, and December, while another sample could

be derived from images in May, June, July, and October. This
method allowed us to train the model on many median com-
posites of images containing varied seasonal characteristics.
'This standard augmentation practice reduced model overfit-
ting to specific characteristics of the median image. For model
inference, we directly applied the trained model to the median
of all monthly images.

We designed a haze correction method during ARD process-
ing to combat the effects of Harmattan haze, which generated
artifacts along the boundaries of neighboring tiles during
model inference. We found the model was particularly sensi-
tive to haze-affected imagery, resulting in class confusion or
inconsistent predictions at tile borders. To address this issue,
we smoothed boundaries between tile neighbors using Wang
et al.’s (2020) methods. This strategy was only applied to tiles

that showed visual inconsistency in the final map product.

Feature extraction

We performed feature extraction to access high-dimensional
representations, or spatial embeddings, from the T'T'C model.
These intermediate frozen layers of the neural network were
isolated and used in a separate supervised classification task.
While the exact semantics of these features were not individu-
ally interpretable, we hypothesized they could capture critical
information about canopy texture, density, or shape that could
inform related tasks. Tapping into the expertise of an existing
tree cover model allowed us to leapfrog over the initial stage of
detecting trees, and instead focus on classification.

The TTC model is a U-Net that takes a bottleneck approach,
whereby a 10-m resolution input is encoded to coarser
resolution features and then reconstructed stepwise into a
10-m resolution output. The model generates features for

16 separate layers at spatial resolutions of 10, 20, 40, 80, and
160 m. For the purposes of transfer learning, we selected the
high resolution (10 m) feature layers from both the U-NET’s
encoder and decoder. A total of 65 spatial embeddings were
extracted for input into the land use classification pipeline.
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Texture features

'The feature generation process involved computing GLCM
texture images. A GLCM is a statistical method that charac-
terizes texture that considers the spatial relationship of pixels.
Image texture is derived from the frequency with which pairs
of pixels, with specific values and in specific spatial relation-
ships, occur in an image (MATLAB Help Center 2025).

In the context of land use classification, texture features can
improve classification accuracy because they focus on spatial
relationships in a landscape, as opposed to the spectral proper-
ties of a single ground unit. GLCM texture-based mapping
has proved effective in several efforts to map heterogenous
agricultural landscapes, detect shrub crops under forest
canopies, and distinguish crops from native forest (Abu et al.
2021; Ashiagbor et al. 2020; Numbisi et al. 2019; Pereira et al.
2022; Sari et al. 2022). Selecting appropriate texture features
and parameters to perform the GLCM calculation can be
difficult because of the distinct composition of LULC classes
and the general lack of guidelines in the field (Mishra et al.
2019). As such, the existing literature informed our parameter
selection (Table 2). The authors wrote the GLCM calcula-
tions in Python to derive four texture statistics (dissimilarity,
correlation, homogeneity, and contrast) for each Sentinel-2
band (blue, green, red, and near infrared [NIR]). We selected a
5 x 5 moving window with one pixel displacement to the right
(zero degree angle). These parameters, including selecting the
moving window size, balanced computational efficiency with
the need to capture spatial patterns and distinguish texture
characteristics within plots.

Model architecture and selection

To select the appropriate algorithm for this supervised per-
pixel classification task, we tested several commonly used
machine learning approaches for creating land use maps in
the remote sensing field (Khatami et al. 2016). The tested
algorithms included Random Forest, support vector machine,
XGBoost, CatBoost, and Light Gradient Boosting Machine
(LightGBM). Baseline comparisons of the receiver operating
characteristic (ROC) curve and the precision recall (PR) curve
were used to determine which model achieved the highest
performance. Generally speaking, the performance did not
vary drastically across machine learning models with the
subset of training data available at the time of testing, which
was approximately 50 percent of the final training dataset
used in this study. CatBoost classifier (Dorogush et al. 2018),
a gradient boosting algorithm, was ultimately selected due to
its comparatively higher scores across ROC and PR curves.
CatBoost is known for its ability to handle imbalanced classes
and resist overfitting better than existing gradient-boosted
decision trees like XGBoost and LightGBM (Bentéjac et

al. 2021; Dorogush et al. 2018). We identified the optimal
combination of features through a feature selection exercise,
which is discussed in the following section. We assessed model
performance throughout the research period to understand
the impact of additional training batches or adjustments in the
pre-processing pipeline. We gleaned insights through a review
of multiple accuracy metrics, but we chose balanced accuracy
as the main metric for evaluation given the imbalanced nature
of the training dataset.

Table 2 | Literature review of GLCM texture properties used for land use classification

(Numbisi et al. 2019) West Africa Cocoa

SOURCE m COMMODITY TEXTURE FEATURE W ANGLES
5x5 (

4 GLCM features (contrast, entropy, correlation,
variance)

0°,45°90° and
135%)

(Abu et al. 2021) West Africa Cocoa 18 GLCM features. GLCM features were not in the top 3x3 (0°,45° 90° and
10 selected. 135°%)

(Descals et al. 2019) Sumatra Qil palm GLCM sum average (band 11), correlation (band 4), 10x10 and 30 unspecified
correlation (enhanced vegetation index [EVI]) x 30

(Pereira et al. 2022) Guinea Bissau Cashew 18 GLCM features (sum average [SAVG] contrast, unspecified unspecified
dissimilarity, inertia)

(Sari et al. 2022) Vietnam Qil palm, rubber 4 GLCM features (mean, variance, homogeneity, and 7x7 unspecified
contrast)

(Maskell et al. 2021) Vietnam Coffee 8 GLCM features 5x5 (tested 3, (0°,45° 90°, and

5,and 7) 135°)

Notes: A literature review of GLCM texture properties helped identify the correct parameters for land use classification.
Sources: Abu et al. 2021; Descals et al. 2019; Maskell et al. 2021; Numbisi et al. 2019; Pereira et al. 2022; Sari et al. 2022.
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Tuning and feature selection

We performed a feature selection and hyperparameter optimi-
zation exercise to narrow down the most influential features
for land use classification. Training with only the most
important features reduced overfitting and training time, while
improving accuracy by removing misleading data and noise.

We used CatBoost’s tree-based feature importance method to
incrementally evaluate and remove features from the training
set until the accuracy metric no longer improved. Recursive
feature elimination was performed on the 81 embeddings and
texture features, not including the 13 Sentinel ARD bands.
'The Sentinel bands were retained in the experiment based on
their demonstrated predictive value (Brandt et al. 2023). This
exercise narrowed the feature set down to 40 features that
explained 85-90 percent of the model’s performance. Identify-
ing the best set of hyperparameters for a given dataset can

be challenging, so we performed an objective search across a
variety of values within a search space by using Scikit-learn’s
RandomizedSearchCV (Pedregosa et al. 2011). The random
search enabled us to discover hyperparameter combinations
that allowed us to find a good model configuration as the
training dataset grew over time.

Accuracy assessment

To evaluate the final classification model, we labeled an
independent set-aside validation dataset and calculated a
confusion matrix to obtain accuracy metrics by land use class.
We collected 1,208 validation points using a stratified random
sample by land cover class. To determine the sample size for
each category, we considered the mapped proportion of each
class and the minimum count of points to produce a suffi-
ciently precise accuracy estimate (FAO 2016). A cushion was
added to account for the possibility of dropped samples during
photointerpretation due to low image availability or quality. A
minimum distance of 10 m was enforced between training and
validation plots.

Table 3 | Accuracy assessment of the land use map

We labeled validation points using the same photointerpreta-
tion criteria as training points. The only difference in this
process was the use of a consensus labeling approach, whereby
two annotators labeled all samples, and a third party reviewed
any disagreements. This approach’s goal was to minimize label
errors and reduce individual annotator bias, given the annota-
tor’s role in labeling both training and validation datasets.
Similar to the process for labeling training data, an “unknown”
label category was included in the validation survey to

capture instances where high resolution imagery was unavail-
able between 2017-2022. If two annotators agreed on an
“unknown” label, it was dropped from the validation dataset.

Results

Map accuracy and area assessments

After fitting and optimizing the CatBoost classifier, we
evaluated it against the set-aside validation dataset. The model
achieved an overall accuracy of 65.27 percent plus or minus
2.69 percent. The user’s and producer’s accuracy for each land
use class was estimated at the 95 percent confidence interval
(Table 3). The CatBoost classifier’s accuracy was assessed using
a confusion matrix, which highlighted where misclassifications
occurred for each class (Figure 4).

We used the final CatBoost model to generate land use maps
and area assessments for all 26 priority districts. Figure 5
shows the map results for the Twifo Atti-Morkwa district in
Central Region, Ghana, calling out detail in a selected region
with various production systems. The map communicates the
predominance of the agroforestry class, which borders two
protected areas. The inset illustrates the landscape’s hetero-
geneity, where high-resolution image interpretation indicates
large industrial oil palm plantations sit alongside monoculture
smallholdings intercropped with cocoa and other commer-
cial tree crops.

LAND USE CLASS USER'S ACCURACY
Other 70.24% + 3.76%
49.73% + 9.73%

64.75% + 4.75%

Agroforestry

58.70% +7.97%

Source: WRI authors.
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PRODUCER'S ACCURACY OVERALL ACCURACY

89.02% + 2.86%
85.01% + 8.54%

65.27% + 2.69%
57.52% + 4.53%

33.59% =+ 5.96%
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Figure 4 | Confusion matrix
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Figure 5 | Map results
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Notes: A) Pixel-based land use map for 26 districts using the CatBoost model. B) District-scale map results for Twifo Atti-Morkwa, home to Twifo Oil Palm Plantations, illustrating
agroforestry, monoculture, natural, and other (background) land use classes.

Source: WRI authors.
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Table 4 | Area extent (ha) for each priority district in Ghana and total extent for each region

DISTRICT MONOCULTURE (HA) AGROFORESTRY (HA) NATURAL (HA)
West Mamprusi Municipal 10 32,540 2,860
Wa East 0 68,180 106,320
Talensi 0 1,100 2,640
Bawku West 0 16,630 2,380
Sissala West 10 41,450 8,660
Builsa South 0 25,810 3710
Daffiama Bussie Issa 0 17,880 19,310
Sissala East 10 139,900 42,230
Kassena Nankana West 10 20,160 2,530
West Gonja 0 n7,770 145,220
Sawla-Tuna-Kalba 0 81,810 118,550
Mamprugu Moagduri 20 51,560 10,150
Twifo Atti-Morkwa 4,220 63,140 26,360
Sene West 70 54,660 135,930
Sekyere Afram Plains North 150 196,600 95,710
Adansi South 1,070 53,780 16,630
Kwahu South 110 31,160 16,240
Kwahu Afram Plains South 70 73,350 60,140
Kwahu Afram Plains North 80 24,300 18,950
Juaben Municipal 550 12,400 3,140
Bosome Freho 740 41,720 11,940
Atwima Mponua 5130 159,430 16,010
Assin North 730 66,770 2,960
Asante Akim South 660 97,540 14,790
Kwahu West 160 32,930 4,570
Kwahu East 120 29,990 9,590

NORTH

SOUTH

Source: WRI authors.
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Figure 6 | Proportional distribution of each land use system per district
(top: northern districts, bottom: southern districts)
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With the land use map, we calculated the total error-adjusted
area assessments for each class in our study (Table 4). We
detected a total of 13,907 ha of monoculture area, 1,562,542
ha of agroforestry area, and 897,523 ha of natural area in
the 26 priority districts. We presented the results by zone,
with 11 districts clustered in the northern Savannah agro-
ecological zone, and the remaining 15 districts clustered in
the South across Transitional and Deciduous agro-ecological
zones. Districts with the largest extent of monoculture area
also contain industrial-scale plantation systems, like teak and
Cedrela plantations in the Jimira Forest Reserve in Atwima
Mponua (Forestry Commission 2021) and the Twifo Oil
Palm Plantations in Twifo Atti-Morkwa. Districts with a
higher proportion of agroforestry extent are largely located
in Ashanti, where cocoa production is concentrated (Abu et
al. 2021) (Table 4 and Figure 6). As expected, districts in the
northern Savannah zone have low-to-no monoculture produc-
tion systems and a higher proportion of area that belongs to
the other (background) class (Figure 6).

Contributions of transfer learning
and texture

'This study follows existing literature, which recognizes texture
properties for their ability to separate tree crops from sur-
rounding land cover and within production systems (Maskell
et al. 2021). Feature importance scores highlighted these
texture features’ contribution to the classifier’s ability to learn
the differences between tree systems. In a pixel-based classifi-
cation exercise that tries to identify systems, a texture feature
that considers relationships with neighbors is, understand-
ably, helpful for the interpretation. Given their high feature
importance scores, dissimilarity, and contrast, texture features
derived from the NIR band were particularly relevant to the
classification (Figure 7). Texture features often exhibit high
correlation with one another (Hall-Beyer 2017), which is a
reason the feature selection exercise was helpful in improving
accuracy. Figure 7 shows the feature importance scores of the
top 40 features used in the model, color coded by category
(Sentinel, embeddings, and texture). The sum of importances
for all features is normalized to equal 100, with higher scores
indicating larger effects on the model’s predictive ability
(Prokhorenkova et al. 2019). Figure 7 shows how embeddings
and texture features explained approximately 90 percent of the
model’s performance.

Transfer learning performance gains

We tested our hypothesis about the value of a transfer
learning-based classification approach using two compara-
tive modeling exercises. The first experiment explored the
performance gains attributable to incorporating extracted
spatial embeddings and texture features, particularly given
the limited size of our training dataset. In other words, we

Figure 7 | Feature importance for the top 40
selected features
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Figure 8 | Learning curve comparison
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Table 5 | Performance comparison with deep learning network

MODEL FEATURE COUNT INPUT SIZE BALANCED ACCURACY

CatBoost classifier 14 x14 patches 0.8605

CNN 13 14 x14 patches 0.7379

Source: WRI authors.

wanted to understand whether spatial embeddings’ contribu-
tion substantially accelerated model learning. Due to the
time-intensive process of acquiring training data, we needed
to forecast how many labeled training data were required for
acceptable accuracy. Learning curves illustrate the relation-
ship between learning and experience and can indicate how
a training dataset’s size can affect model performance. In the
early research stages, comparing learning curves confirmed

that adding extracted T'TC and texture features could improve

model accuracy with a low number of training samples.
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Figure 8 shows the results of the learning curve comparison
for two CatBoost classifiers. The first classifier was trained
using only Sentinel imagery, and the second was trained using
Sentinel imagery, GLCM texture features, and the extracted
embeddings from the TTC model. A target accuracy of

80 percent is shown as a general illustrative goal. The value
of the model that uses transfer learning is evident as more
samples are introduced. The results of the test set confirmed
that training with transfer learning (blue) allowed the model
to approach the hypothetical target accuracy faster, and with
fewer training samples, compared to a baseline model (red).
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We performed this experiment to validate our early hypoth-
esis that transfer learning improves performance with fewer
labeled samples. The baseline model without transfer learning
exhibited a slight downward trend in accuracy as training
samples increased. This finding likely reflects the model’s
sensitivity to label noise and class confusion in the more
heterogenous dataset, as well as transfer learning’s potential
stabilizing effect (blue lines in Figure 8).

Our second experiment involved benchmarking the CatBoost
model, trained with extracted features and GLCM texture
features, against a standard deep learning approach. For this
experiment, we implemented a CNN with a U-Net architec-
ture, similar to the one Brandt et al. (2023) used. We trained
the CNN using the same features, labels, and train-test split
to ensure a direct comparison. We evaluated the model over
10 epochs using pixel-wise cross entropy loss and standard
accuracy metrics.

To compare the CatBoost classifier’s performance with a
standard deep learning algorithm, we looked at the bal-
anced accuracy score for the entire validation set. Balanced
accuracy was selected due to the slight class imbalance. Early
comparative tests confirmed the transfer learning approach,
incorporating extracted features and texture properties,
offered a performance advantage for this task (Table 5).
These exercises supported the study hypothesis that a transfer
learning approach could improve performance when given
limited labeled data (training samples) and a heterogenous
class structure.

Figure 9 | Sentinel-2 spectral signature analysis

Discussion

Classifier performance

The results of the classification exercise and associated model
comparisons demonstrate how transfer-learned features can
help distinguish between tree-based systems in Ghana.

'The model experienced confusion between the natural and
agroforestry classes, which was expected due to the similar
spectral signatures and spatial organization of shaded cocoa
and open canopy forests. This finding could also be a mani-
festation of the fact that individual trees of the same species
belonged to both of these land use classes. Most false positives
for the natural class are classified as agroforestry and vice
versa. The inclusion of diverse agroforestry systems within a
single class, specifically shaded cocoa and cultivated shea, is
likely responsible for low precision. While priority districts in
eastern and western Ghana are predominantly comprised of
cocoa agroforestry, agroforestry parkland systems (cropland
areas with dispersed trees) characterize much of the savannah
region of the northern priority districts. Low producer’s accu-
racy for the natural class, often misclassified as agroforestry,
likely stems from confusion in the North, where shea trees
grow in both wild and agroforestry systems. In fact, stud-

ies analyzing shea tree populations across different land-use
types (Jepsen et al. 2024) have found a higher density of shea
trees in uncultivated bushland areas compared to agricultural
land. Local farmers in Ghana even describe shea trees as wild,
since they often stem from natural regeneration rather than
intentional planting efforts. The confusion between natural
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Notes: nm = nanometers in Figure 9. This figure shows the Sentinel-2 spectral signature of four representative tiles of the target land use classes. The curves illustrate variation in

average surface reflectance across Sentinel-2 bands (B02-B12).
Source: WRI authors

TECHNICAL NOTE | December 2025 | 17



and agroforestry systems in the final map product is caused by
the presence of shea trees in uncultivated bushlands, as well as
highly managed agricultural systems.

Initial exploratory analyses of the Sentinel-2 optical data
hinted at this separability problem between classes and across
regions in Ghana. Figure 9 shows the spectral signature of
Sentinel-2 ARD for four tiles. Each tile represents a target
land use class, including two subsets of the agroforestry class
(cocoa and shea agroforestry systems). The graph shows the
mean surface reflectance value across the 10 Sentinel-2 bands
(B02-B12). Recognizing some inherent limitations to this
analysis (Sentinel-2 images could come from varying seasons
with varying quality, and no tile is solely comprised of a single
land use class), we were still confident these results showed
enough distinction in spectral signature alone to perform a
decent classification. At the same time, this exercise under-
scored separability challenges for certain agroforestry system
types. Despite being in the same target class, the spectral sig-
natures of the two agroforestry systems are relatively unique.
Moreover, the spectral signatures of an agroforestry shea
system and a natural parkland show relative similarities. The
low degree of separability for these two northern Savannah
zone systems, which make up the largest proportional land
area in the final map, are the reason we see so much confusion
between the natural and agroforestry classes in the confusion
matrix (Figure 9). One step to improve class-specific precision
and recall is creating training data for more narrowly defined
subclasses that reflect the distinct structural and spatial char-
acteristics of different agroforestry systems.

Of all the land use classes, the monoculture class had the
lowest accuracy and highest margin of error. Monoculture
samples only represented 18 percent of the training data. To
account for class imbalance in the training data, we assigned
higher weight to underrepresented classes when training the
CatBoost model. However, the low proportion of training data
could have affected the model’s ability to learn this minority
class, especially for smallholder oil palm and other monocul-
ture tree crops. The high producer’s accuracy relative to the
other two tree classes (agroforestry and natural) indicates
most of the positives were true positives (correctly identified).
'The low user’s accuracy of the monoculture class stems from
confusion with the agroforestry class. Judging by the large
industrial monoculture farms identified in the map (Figure
5), this error is less likely to occur at the industrial plantation
scale. It is more likely to occur in irregularly shaped, small-
holder farms that make up 93 percent of oil palm concessions

by area in Ghana (Meijaard et al. 2018).

Sources of error in ground truth labeling

We took multiple steps to mitigate the risk of poor label
quality, such as developing a rigorous photointerpretation
protocol, gathering input from experts in Ghana, and using
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algorithmic label review with Cleanlab. To gather sufficient
training and reference data, this study relied on photointerpre-
tation and image-drawn labels of complex agricultural systems
at small scales. Despite these measures, training data labels
were subjected to the annotators’ (in this case, this study’s
authors) expertise and judgment. These data labels also relied
on the availability of high-resolution imagery to support visual
interpretation of tree dynamics in the study year. If a high-
resolution image was not available for 2020, an image from

an earlier or later year was used to determine the appropriate
pixel label. This approach often resulted in a temporal mis-
match, compounded by the effect of using different source
imagery to inform the labels and perform the classification.
For this study, we used Google Earth Pro 1015 cm resolution
data to inform the annotation and Sentinel-2 data at 10-m
resolution to produce maps (Estes et al. 2022). In the context
of Ghana’s rapidly evolving agricultural frontier, this problem
is particularly relevant because a land cover change could
occur in the time between when the two images were taken.
This means even accurately drawn labels have the potential

to introduce error during model training and assessment

(Estes et al. 2022).

Errors observed in the other (background) class, where the
reference label indicated agroforestry or natural systems, are
likely attributable to annotation ambiguity or interpreta-
tion. This result could happen in scenes where it was unclear
whether a pixel intersected a tree or sparse shrubbery. These
discrepancies could also reflect seasonal differences in the
imagery used during photointerpretation.

Variability in the agroforestry class

Compounding the difficulty in visually distinguishing natural
and cocoa agroforestry systems, a key constraint to accurate,
operational land use mapping lies in fundamental inconsis-
tencies in definitions (Njomaba et al. 2025; Rosenstock et al.
2019). Varied interpretations of what exactly is an agroforestry
system limit the availability of harmonized reference data that
can train machine learning models. These differing interpreta-
tions also hinder comparative analyses across remote sensing
products. Since clear definitions form the foundation of
technical methodologies, varying definitions can result in over
or underestimations of extent.

In one of the first remote sensing-derived efforts used to
quantify the extent of agroforestry at a global scale, Zomer et
al. (2014) defined agroforestry as agricultural land with tree
cover greater than 10 percent. While an important advance-
ment, this approach depends on the accuracy of an underlying
agricultural land cover classification. The consequence is an
underrepresentation of agroforestry systems found on land
that meet the forest definition, such as in Cameroon, where
cocoa agroforests can exhibit over 80 percent tree cover

(Rosenstock et al. 2019). Lesiv et al. (2017) conducted another
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global-level effort to map agroforestry alongside other forest
management classes. The researchers defined agroforestry

as managed forests on “other landscapes.” This agroforestry
definition includes trees in cropland, pasture, or urban areas, as
well as shifting cultivation and fruit trees such as olives, apples,
nuts, and cocoa (Lesiv et al. 2017). In their research, den
Herder et al. (2017) mapped the distribution of agroforestry
across the European Union, noting how their comparatively
higher estimates of agroforestry extent may have arisen from
underlying assumptions and criteria. In contrast to studies
that use land cover criteria as part of their agroforestry defini-
tion, our study recognizes that agroforestry can occur across
nearly all land cover types (Daniel et al. 2018). We also use a
broader definition focused on canopy strata and planting pat-
terns. Since this study focuses exclusively on the classification
of spectral and textural features in satellite imagery, we exclude
an important component of the agroforestry definition that
considers intentionality: agroforestry systems are intention-
ally established and managed (Terasaki Hart et al. 2023).

This variability in how agroforestry is defined across remote
sensing products highlights the extent to which underlying
definitions greatly influence area estimates (den Herder et al.
2017). While this study’s objective does not propose a national
legend or set of land cover definitions, we hope these findings
shed light on the opportunities and limitations in designing a
system that uses transfer learning to augment remote sensing
machine learning classification techniques.

Conclusion

This study introduces a transfer learning approach to classify
tree-based systems, leveraging extracted spatial embeddings
from a high-performing neural network to improve clas-
sification accuracy in label-scarce environments. We apply

a CatBoost classifier to a combination of Sentinel imagery,
GLCM texture features, and extracted spatial embeddings to
classify four land use classes: natural, agroforestry, monocul-
ture, and other (background). Through comparative modeling
and feature selection exercises, we demonstrate that includ-
ing spatial embeddings and texture features improves model
performance. We demonstrate this method for 26 priority
districts in Ghana, resulting in a 10-m resolution land use
map for 2020. Area assessments reveal a total of 13,907 ha
of monoculture area, 1,562,542 ha of agroforestry area, and
897,523 ha of natural area in the 26 districts.

Using embeddings from the TTC algorithm in the predic-
tion pipeline allowed us to leapfrog over standard approaches
to develop 10-m resolution land use maps for Ghana. We
confirmed this hypothesis through performance comparisons
between our final CatBoost model and a CNN, as well as a
CatBoost classifier trained without embeddings. In piloting
the transfer learning method in Ghana, we hope to contribute
to discourse around developing national land use definitions
and their associated remote sensing characteristics. This study
presents an approach that uses spatially aware texture features
to perform a system classification that is agnostic to species.
In doing so, we aim to identify a broader set of structural and
spatial patterns through this system-level framing to address
the absence of studies that focus on detection beyond a single
commodity type. We propose this approach for its relevance
and potential application outside of the immediate study area
used in this paper. Additional training and reference labels in
the target expansion areas are needed to expand this method
to new geographies. Further research could focus on using an
automated approach to gather high-quality training samples,
such as using a label propagation algorithm. This study derived
texture features directly from spectral bands. Future work
could explore texture analyses from vegetation indices, such as
the normalized difference vegetation index.

We also build on Brandt et al.’s (2023) novel contributions by
capitalizing on their preprocessing pipeline used to produce
cloud-free, analysis-ready composites of Sentinel imagery. As
the T'TC data expand in temporal coverage (2017-2024) in
the coming years, the decision to use a methodologically com-
patible processing pipeline enables future harmonization with
TTC change detection applications. Currently, large-scale tree
cover datasets, like those of Brandt et al. (2023) and Hansen et
al. (2013), do not distinguish between natural and agricultural
trees, which limits their ability to identify drivers of tree cover
gain or loss. Our findings suggest transfer-learned spatial
features from the T'T'C model offer value beyond their original
predictive task and also represent a scalable path forward for
broader restoration monitoring efforts. We hope this initial
investigation offers a useful starting point for remote sensing
and machine learning practitioners who seek to apply transfer
learning when designing datasets that monitor the extent of
agricultural and natural trees.
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